首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Microwave plasma assisted synthesis of diamond is experimentally investigated using high purity, 2–5% CH4/H2 input gas chemistries and operating at high pressures of 180–240 Torr. A microwave cavity plasma reactor (MCPR) was specifically modified to be experimentally adjustable and to enable operation with high input microwave plasma absorbed power densities within the high-pressure regime. The modified reactor produced intense microwave discharges with variable absorbed power densities of 150–475 W/cm3 and allowed the control of the discharge position, size, and shape thereby enabling process optimization. Uniform polycrystalline diamond films were synthesized on 2.54 cm diameter silicon substrates at substrate temperatures of 950–1150 °C. Thick, freestanding diamond films were synthesized and optical measurements indicated that high, optical-quality diamond films were produced. The deposition rates varied between 3 and 21 μm/h and increased as the operating pressure and the methane concentrations increased and were two to three times higher than deposition rates achieved with the MCPR operating with equivalent input methane concentrations and at lower pressures (≤ 140 Torr) and power densities.  相似文献   

2.
The design and performance of a microwave plasma chemical vapor deposition (MPCVD) reactor based on compressed microwave waveguides and plate-to-plate substrate holders are described. This reactor can be operated at pressures from 10 to 40 kPa with microwave power of 0.4–1.2 kW, and a high plasma power density up to 500 W/cm3 can be obtained. The single-crystal diamond (lower substrate holder) and polycrystalline diamond (upper substrate holder) have been grown by the plate-to-plate MPCVD reactor using high pressure CH4-H2 mixture gases. Experimental results show that high quality single-crystal diamond and polycrystalline diamond were simultaneously synthesized at a growth rate of 25 μm/h and 12 μm/h, respectively. The results indicate that our MPCVD reactor is unique for the synthesis of diamond with high efficiency.  相似文献   

3.
The detailed experimental behavior of a microwave plasma assisted chemical vapor deposition (MPACVD) reactor operating within the high, 180–300 torr, pressure regime is presented. An experimental methodology is described that first defines the reactor operating field map and then enables, while operating at these high pressures, the determination of the efficient, safe and discharge stable diamond synthesis process window. Within this operating window discharge absorbed power densities of 300–1000 W/cm3 are achieved and high quality, single crystal diamond (SCD) synthesis rates of 20–75 μm/h are demonstrated. The influence of several input experimental variables including pressure, N2 concentration, CH4 percentage and substrate temperature on SCD deposition is explored. At a constant pressure of 240 torr, a high quality, high growth rate SCD synthesis window versus substrate temperature is experimentally identified between 1030 and 1250 °C. When the input nitrogen impurity level is reduced below 10 ppm in the gas phase the quality of the synthesized diamond is of type IIa or better.  相似文献   

4.
Growth and applications of large size high quality single crystal diamond is one of the most significant progresses in the field of CVD diamond film research ever made in the past 15 years. However, up to now most of the works were done by microwave plasma CVD operating at high pressures. In the present investigation it is demonstrated that relatively high quality single crystal diamond layer with the FWHM of the diamond Raman peak of less than 2 cm 1 and the FWHM of the diamond (400) reflection X-ray Rocking Curve of 0.028° can be obtained by the 20 kW dc arc plasma jet operating at blow down (open cycle) mode at a growth rate as high as 36 μm/h. The reason why dc arc plasma jet is also suitable for high quality epitaxial growth of single crystal diamond is that very high concentration of atomic hydrogen can be easily provided by the extremely high gas temperature due to the arc discharging. Detailed results on the effects of the ratio of H2/Ar, the distance between the substrate to the anode nozzle of the arc plasma torch, the concentration of methane, and the substrate temperature on the growth of single crystal diamond are presented, and discussed comprehensively, and compared to that with the MWCVD, and with our previous work on the 30 kW dc arc plasma jet operating at arc root rotation and gas recycling mode.  相似文献   

5.
The electron density is measured in a microwave plasma-assisted chemical vapor deposition diamond reactor at moderate pressures (5–60 Torr) using a millimeter-wave open resonator technique. The discharge plasma is generated using a resonant cavity excited at the frequency 2.45 GHz. The absorbed input power of 400 W generates a microwave discharge above a substrate holder located in a quartz dome. The discharge, shaped as a plasma ball or hemisphere, is positioned in the resonant path of the millimeter-wave open resonator operating at the frequency 32.2 GHz. The millimeter-wave open resonator operates with a quality factor of approximately 3500. The shift in the resonant frequency of the resonator when the discharge plasma is present allows the determination of the electron density. The electron densities measured were in the range of (1–6)×1011 cm−3 for the pressure range of 5–60 Torr. Electron density measurements for various reactor parameter settings are presented for both pure hydrogen and hydrogen–methane mixture discharges.  相似文献   

6.
Semiconducting n-type diamond can be fabricated using phosphorus as a substitutional donor dopant. The dopant activation energy level at 0.58 eV is deep. At high dopant concentrations of 1020 cm 3 the activation energy reduces to less than 0.05 eV. Phosphorus doping at concentrations of 1020 cm 3 or higher has been achieved with epitaxial growth on the (111) diamond crystallographic surface. In this work epitaxial growth of diamond with high phosphorus concentrations exceeding 1020 cm 3 is performed using a microwave plasma-assisted chemical vapor deposition process with process conditions that include a pressure of 160 Torr. This pressure is higher than previous phosphorus doping reports of (111) surface diamond growth. The other growth conditions include a feedgas mixture of 0.25% methane and 500 ppm phosphine in hydrogen, and a substrate temperature of 950–1000 °C. The measured growth rate was 1.25 μm/h. The room temperature resistivity of the heavily phosphorus doped diamond was 120–150 Ω-cm and the activation energy was 0.027 eV.  相似文献   

7.
We report on the grain size dependent morphological, physical and chemical properties of thick microwave-plasma assisted chemical vapor deposited (MPCVD) diamond films that are used as target materials for high energy density physics experiments at the Lawrence Livermore National Laboratory. Control over the grain size, ranging from several μm to a few nm, was achieved by adjusting the CH4 content of the CH4/H2 feed gas. The effect of grain size on surface roughness, morphology, texture, density, hydrogen and graphitic carbon content was systematically studied by a variety of techniques. For depositions performed at 35 to 45 mbar and 3000 W microwave power (power density ~ 10 W cm 3), an abrupt transition from micro-crystalline diamond to nanocrystalline diamond was observed at 3% CH4. This transition is accompanied by a dramatic decrease in surface roughness, a six percent drop in density and an increasing content in hydrogen and graphitic carbon impurities. Guided by these results, layered nano-microhybrid diamond samples were prepared by periodically changing the growth conditions from nano- to microcrystalline.  相似文献   

8.
CVD Diamond can now be deposited either in the form of single crystal homoepitaxial layers, or as polycrystalline films with crystal sizes ranging from mm, μm or nm, and with a variety of growth rates up to 100s of μm h 1 depending upon deposition conditions. We previously developed a model which provides a coherent and unified picture that accounts for the observed growth rate, morphology, and crystal sizes, of all of these types of diamond. The model is based on competition between H atoms, CH3 radicals and other C1 radical species reacting with dangling bonds on the diamond surface. The approach leads to formulae for the diamond growth rate G and average crystallite size <d> that use as parameters the concentrations of H and CHx (0  x  3) near the growing diamond surface. We now extend the model to show that the basic approach can help explain the growth conditions required for single crystal diamond films at pressures of 100–200 Torr and high power densities.  相似文献   

9.
From interpretation of the Bachmann diagram, it is conceivable that there may be some advantage to be gained by moving up the H–CO tie line for optical-quality diamond deposition. A convenient system for achieving this are gas chemistries containing CO2, which, when combined with gases such as CH4 and C2H4 (ethylene), enables the diamond deposition region to be traversed and, with the addition of hydrogen, to move along the H–CO tie line. The fabrication of free-standing diamond wafers using combinations of these feed-stock gases with a high-pressure, 2.45-GHz microwave source reactor (HPMS) able to operate at up to 140 Torr and 6 kW has been investigated. The FWHM line width of the 1332 cm−1 Raman peak is found to be predominately a function of the gas composition. The growth rate is also dependent on the input power and the deposition pressure. The deposition plasmas are bright green in colour, and optical emission spectroscopy (OES) of the plasma reveals distinctive C2 and Hα peaks. In some cases, it is possible to correlate characteristics of the deposited diamond layer to features in the OES spectra.  相似文献   

10.
Homoepitaxial growth of single crystal diamond by microwave plasma chemical vapor deposition in pulsed regime of a 2.45 GHz MPACVD reactor operation at pulse repetition rates of 150 and 250 Hz was investigated. The high quality CVD diamond layers were deposited in the H2-CH4 gas mixture containing 4% and 8% of methane, gas pressures of 250 and 260 Torr and substrate temperature of 900 °C without any nitrogen addition. The (100) HPHT single crystal diamond seeds 2.5 × 2.5 × 0.3 mm (type Ib) were used as substrates. At pulse repetition rate 150 Hz the high quality single crystal diamond was grown with growth rate of 22 μm/h. The comparison of the single crystal diamond growth rates in CW and pulsed wave regimes of MPACVD reactor operation at microwave power density 200 W/cm3 was made. It was found that at equal power density, the growth rate in pulsed wave regime was higher than in CW regime. Differences in single crystal diamond growth for two sets of experiments (with continuous and pulsed wave regimes) were explained.  相似文献   

11.
It is well established that argon rich plasmas (> 90% Ar) in Ar/CH4/H2 gas mixtures lead to (ultra)nanodiamond nucleation and growth by microwave plasma chemical vapour deposition (MPCVD). Nonetheless, in the present work, both microcrystalline and nanocrystalline diamond deposits developed under typical conditions for ultrananocrystalline (UNCD) growth by MPCVD. Silicon substrates were pretreated by abrasion using two different diamond powder types, one micrometric (< 0.5 μm) and the other nanometric (∼ 4 nm), the latter obtained by detonation methods. Samples characterization was performed by SEM (morphology), AFM (roughness and morphology) and micro-Raman (structure).For all samples, Raman analysis revealed good crystalline diamond quality with an evident ∼ 1332 cm 1 peak. The Raman feature observed at ∼ 1210 cm 1 is reported to correlate with two other common bands at ∼ 1140 cm 1 and ∼ 1490 cm 1 characteristic of nano- and ultra-nanocrystalline diamond.A new growth process is proposed to explain the observed morphology evolution from nano- to microcrystalline diamond. Based on this, the microcrystalline morphology is in fact a crystallographically aligned construction of nanoparticles.  相似文献   

12.
There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m1/2 in comparison to 5–10 MPa m1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.  相似文献   

13.
Large-scale heteroepitaxial growth of diamond depends critically on the development of a suitable lattice-matched substrate system. Oxide substrates, notably MgO and SrTiO3, on which thin epitaxial films of iridium serve as a nucleation layer for diamond have already shown considerable promise. We describe here improvements in the growth of single crystal diamond by low-pressure microwave plasma-enhanced CVD. Oxide substrates with flat, low-index surfaces form the initial basis for the process. Iridium was deposited on heated substrates in a UHV electron-beam evaporation system resulting in epitaxial films, typically 150–300 nm thick, with Ir (1 0 0) parallel to the surface of all substrates as confirmed by X-ray and electron backscattering diffraction. Following Ir deposition, the samples were transferred to a CVD reactor where a bias-enhanced nucleation step induced a dense condensate that completely covered the Ir surface. Uniform nucleation densities of order 1012 cm−2 were observed. Interrupted growth studies, carried out at intervals from seconds to minutes subsequent to terminating the nucleation step, revealed a rapid coalescence of grains. One hour of growth resulted in a smooth, nearly featureless, (0 0 1) diamond film. For extended growth runs, slabs of diamond were grown with thickness as great as 38 μm and lateral dimensions near 4 mm. The crystals were transparent in visible light and cleaved on (1 1 1) planes along 〈1 1 0〉 directions, similar to natural diamond. Of particular significance is the successful use of sapphire as an underlying substrate. Its high crystalline perfection results in epitaxial Ir films with X-ray linewidths comparable to those grown on SrTiO3. However, Al2O3 possesses superior interfacial stability at high temperatures in vacuum or in a hydrogen plasma with a better thermal expansivity match to diamond. Since sapphire is available as relatively inexpensive large diameter substrates, these results suggest that wafer-scale growth of heteroepitaxial diamond should be feasible in the near future.  相似文献   

14.
We present the results of studying a continuous microwave discharge maintained at a frequency of 2.45 GHz in a CVD reactor based on a cylindrical resonator excited at the TM013 mode. The discharge was ignited in hydrogen and a gaseous mixture of hydrogen and methane and was studied by the method of optical emission spectroscopy. Density of atomic hydrogen and gas temperature were measured, as well as the spatial distribution of both optical emission intensity of the plasma and intensity of the Hα line of atomic hydrogen. The main parameters of the discharge were calculated numerically using the two-dimensional self-consistent model of the discharge. Basing on the obtained results, we proposed a method for high-precision experimental determination of the plasma volume and calculation of the specific energy contribution to the plasma, i.e., microwave power density in plasma (MWPD), with minimal errors. According to the calculations, in the experiment performed, the microwave power density in the plasma varied from 50 to 550 W/cm3 as the gas pressure increased from 80 to 350 Torr. The method allows one to perform unified MWPD calculations in different CVD reactors and to compare diamond film deposition regimes.  相似文献   

15.
We present investigation of nanocrystalline diamond films deposited in a wide temperature range. The nanocrystalline diamond films were grown on silicon and glass substrates from hydrogen based gas mixture (methane and hydrogen) by microwave plasma CVD process. Film composition, nano-grain size and surface morphology were investigated by Raman spectroscopy and scanning electron microscopy. All samples showed diamond characteristic line centred at 1332 cm 1 in the Raman spectrum. Nanocrystalline diamond layers revealed high surface flatness (under 10 nm) with crystal size below 60 nm. Surface morphology of grown films was well homogeneous over glass substrates due to used mechanical seeding procedure. Very thin films (40 nm) were successfully grown on glass slides (i.e. standard size 1 × 3″). An increase in delay time was observed when the substrate temperature was decreased. A possible origin for this behaviour was discussed.  相似文献   

16.
The microwave plasma-assisted deposition of reproducible and homogeneously n-type phosphorus-doped polycrystalline (microcrystalline) diamond films on silicon substrates is described. The phosphorus incorporation is obtained by adding gaseous phosphine (PH3) to the gas mixture during growth. The low CH4/H2 ratio (0.15%) and the use of the same growth parameters as for homoepitaxial {111} films, led to a good crystalline quality of the continuous polycrystalline diamond layers, confirmed by SEM images and Raman spectroscopy measurements.Secondary-ion mass spectrometry (SIMS) analysis measured a phosphorus concentration [P] of at least 7 × 1017 cm 3. Cathodoluminescence spectroscopy in our P-doped polycrystalline films shows a phosphorus bound exciton (BETOP) peak between 5.142 and 5.181 eV. Cathodoluminescence and Raman-effect spectroscopy confirmed the improvement of the crystalline quality of our films as well as a decrease in the intensity of the internal strain when the grain size was decreased. Cathodoluminescence imaging and SIMS depth profile of phosphorus demonstrated a very good homogeneity of phosphorus incorporation in the films.  相似文献   

17.
Boron doped diamond layers have been grown on (110) single crystal diamond substrates with B/C ratios up to 20 ppm in the gas phase. The surface of the diamond layers observed by scanning electron microscopy consists of (100) and (113) micro-facets. Fourier Transform Photocurrent Spectroscopy indicates substitutional boron incorporation. Electrical properties were measured using Hall effect from 150 to 1000 K. Secondary ion mass spectrometry analyses are consistent with the high incorporation of boron determined by electrical measurements. A maximum mobility of 528 cm2 V 1 s 1 was measured at room temperature for a charge carrier concentration of 1.1 1013 cm 3. Finally, properties of boron doped (110) diamond layers are compared with layers on (100) and (111) orientated substrates.  相似文献   

18.
We found a strong impact of gas flow rate on diamond growth process in a 5 kW microwave plasma chemical vapour deposition reactor operated on CH4-H2 gas mixtures. Diamond films of 0.1–1.2 mm thickness and 2.25 in. in diameter were produced at H2 flow rates varied systematically from 60 sccm to 1000 sccm at 2.5% CH4. The highest growth rate, 5 μm h−1, was observed at intermediate F values (≈300 sccm). Carbon conversion coefficient (the number of C atoms going from gas to diamond) increases monotonically up to 57% with flow rate decrease, however, this is accompanied with a degradation of diamond quality revealed from Raman spectra, thermal properties and surface morphology. High flow rates were necessary to produce uniform films with thermal conductivity >18 W cm−1 K−1. Diamond disks with very low optical absorption (loss tangent tgδ<10−5) in millimetre wave range (170 GHz) have been grown at optimized deposition conditions for use as windows for high-power gyrotrons.  相似文献   

19.
We report on the preparation and characterisation of boron (B) doped nano-crystalline diamond (B-NCD) layers grown over large areas (up to 50 cm × 30 cm) and at low substrate temperatures (< 650 °C) using microwave plasma enhanced linear antenna chemical vapour deposition apparatus (MW-LA-PECVD). B-NCD layers were grown in H2/CH4/CO2 and H2/CH4 gas mixtures with added trimethylboron (TMB). Layers with thicknesses of 150 nm to 1 μm have been prepared with B/C ratios up to 15000 ppm over a range of CO2/CH4 ratios to study the effect of oxygen (O) on the incorporation rate of B into the solid phase and the effect on the quality of the B-NCD with respect to sp3/sp2 ratio. Experimental results show the reduction of boron acceptor concentration with increasing CO2 concentration. Higher sp3/sp2 ratios were measured by Raman spectroscopy with increasing TMB concentration in the gas phase without CO2. Incorporation of high concentrations of B (up to 1.75 × 1021 cm3) in the solid is demonstrated as measured by neutron depth profiling, Hall effect and spectroscopic ellipsometry.  相似文献   

20.
A process of making a large, thick single crystal CVD diamond plates has been developed. This process consists of high rate homoepitaxial growth of CVD diamond and subsequent lift-off process using ion implantation. By using this process, single crystal CVD diamond plates with the size of about 10 × 10 × 0.2–0.45 mm3 have been successfully fabricated. The crystallinity of the CVD diamond plates has been evaluated by X-ray topography, polarized light microscopy and high resolution X-ray diffraction. The results indicate the pretreatment of the seed substrate has strong effect on the crystallinity of the CVD diamond plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号