共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a cladding investigation to achieve uniform distribution of WC particles which is crack-free, non-porous and without delamination using a 2 kW IPG Ytterbium doped, continuous wave, fibre laser with 1070 nm wavelength was reported. The single track deposition of a pre-blended powder, 27 wt.% Ti–6Al–4V/73 wt.% WC with a particle size range of 40–120 μm was made on Ti–15V–3Cr–3Sn–3Al substrate using a co-axial nozzle and a standard powder feeding system. The laser cladding samples were subjected to various microstructure examinations, microhardness and micro-abrasion tests. The results revealed that the best clad layers were achieved at an energy density of 111.10 J.mm?2, 15–18.3 mm.s?1 traverse speed; (583–667) mg.s?1 powder feed rate with substrate surface irradiated by laser beam raising its temperature to about 200 °C. This resulted in a uniform distribution of WC within the clad and the results obtained from SEM, EDS and XRD revealed that the WC particles experienced surface melting with some diffusion into the matrix, thus promoting excellent bonding with the matrix and the formation of titanium and tungsten carbides, which include TiC and W2C. The emergence of β-Ti, TiC and W in the clad resulted in enhanced hardness values. The mean value of microhardness in clad matrix is 678 HV when measured from the top of a transverse cross section of the clad sample into the interface region with the Ti substrate which has a hardness of 396 HV. Wear tests indicated the wear resistance of the clad was seven times that of the Ti alloy substrate. 相似文献
2.
Shangwu Zeng Aimin Zhao Haitao Jiang Xiang Fan Xiaoge Duan Xiaoqian Yan 《Oxidation of Metals》2014,81(3-4):467-476
The cyclic oxidation behavior of the Ti–6Al–4V alloy has been studied under heating and cooling conditions within a temperature range from 550 to 850 °C in air for up to 12 cycles. The mass changes, phase, surface morphologies, cross-sectional morphologies and element distribution of the oxide scales after cyclic oxidation were investigated using electronic microbalance, X-ray diffractometry, scanning electron microscopy and energy dispersive spectroscopy. The results show that the rate of oxidation was close to zero at 550 °C, obeyed parabolic and linear law at 650 and 850 °C, respectively, while at 750 °C, parabolic—linear law dominated. The double oxide scales formed on surface of the Ti–6Al–4V alloy consisted of an inner layer of TiO2 and an outer layer of Al2O3, and the thickness of oxide scales increased with an increasing oxidation temperature. At 750 and 850 °C, the cyclic oxidation resistance deteriorated owing to the formation of voids, cracks and the spallation of the oxide scales. 相似文献
3.
Infrared brazing of Ti–6Al–4V using two silver-based alloys is evaluated in the study. For the 72Ag–28Cu brazed specimen, Ag-rich matrix, eutectic Ag–Cu and Cu–Ti interfacial reaction layer(s) are observed in the experiment. In contrast, both Ag-rich matrix and interfacial titanium aluminides, TiAl or Ti3Al, are found in the 95Ag–5Al brazed joint. In general, the shear strength of 72Ag–28Cu brazed joint is much higher than that of 95Ag–5Al brazed specimen. Additionally, the use of infrared brazing with lower brazing temperature and/or less time can significantly decrease both dissolution of the substrate into molten braze as well as excessive growth of the interfacial reaction layer(s) in the joint. Therefore, infrared brazing has the potential to be applied in industry. 相似文献
4.
In this work, an attempt is made to reduce the detrimental effects that occurred during machining of Ti–6Al–4V by employing surface textures on the rake faces of the cutting tools. Numerical simulation of machining of Ti–6Al–4V alloy with surface textured tools was employed, taking the work piece as elasto-plastic material and the tool as rigid body. Deform 3D software with updated Lagrangian formulation was used for numerical simulation of machining process. Coupled thermo-mechanical analysis was carried out using Johnson-cook material model to predict the temperature distribution, machining forces, tool wear and chip morphology during machining. Turning experiments on Ti–6Al–4V alloy were carried out using surface textured tungsten carbide tools with micro-scaled grooves in preferred orientation such as, parallel, perpendicular and cross pattern to that of chip flow. A mixture of molybdenum disulfide with SAE 40 oil (80:20) was used as semi-solid lubricant during machining process. Temperature distribution at tool–chip interface was measured using an infrared thermal imager camera. Feed, thrust and cutting forces were measured by a three component-dynamometer. Tool wear and chip morphology were captured and analyzed using optical microscopic images. Experimental results such as cutting temperature, machining forces and chip morphology were used for validating numerical simulation results. Cutting tools with surface textures produced in a direction perpendicular to that of chip flow exhibit a larger reduction in cutting force, temperature generation and reduced tool wear. 相似文献
5.
《Science & Technology of Welding & Joining》2013,18(5):456-461
AbstractTi–6Al–4V alloy was joined with TiB2–Ni cermet by using pulsed current heating and hot pressing. The properties were found to be better with the pulsed current process, because the current enhanced the growth of Ni–Ti phase at the junction between the two materials. Furthermore, the heat affected zone is localised in the pulsed current process relative to that in the hot pressed material. 相似文献
6.
Nanofluid, fluid suspensions of nanometer sized particles are revolutionizing the field of heat transfer area. Addition of nano-particles to the base fluid also alters the lubricating properties by reducing the friction. In grinding process, friction between the abrasive grains and the workpiece is a key issue governing the main grinding output. It has a direct influence on grinding force, power, specific energy and wheel wear. Moreover, high friction force increases the heat generation and lead to thermal damage in the surface layer of the ground work. Hence, any effort towards the friction control will enhance the component quality significantly. In this study, nanofluid as metal working fluid (MWF) is made by adding 0.05, 0.1, 0.5 and 1% volume concentration of Al2O3 and CuO nano-particles to the water during the surface grinding of Ti–6Al–4V in minimum quantity lubrication (MQL) mode. Surface integrity of ground surface, morphology of the wheel, and chip formation characteristics are studied using surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and stereo zoom microscopy (SZM). Coefficient of friction was estimated On-Machine using the measured forces. The results showed that the type of nanoparticle and its concentration in base fluid and the MQL flow rate play a significant role in reducing friction. Application of nanofluid leads to the reduction of tangential forces and grinding zone temperature. The cooling effect is also evident from the short C-type chip formation. MQL application with Al2O3 nanofluid helps in effective flushing of chip material from the grinding zone, thereby solving the main problem during the grinding of Ti–6Al–4V. 相似文献
7.
Owing to the high-temperature reactivity of titanium, the oxidation and alloying of titanium during hot working processes is an important variable. The oxidation behavior of Ti–6Al–4V alloy in air was investigated at various temperatures between 850 and 1100 °C for different times. The oxidation kinetics were determined by isothermal oxidation weight gain experiments. The results showed that the oxidation kinetics approximately obeyed a parabolic law. The activation energy of oxidation was estimated to be 199 and 281 kJ mol?1 when temperature was above and below the beta transformation temperature (T β), respectively. A model to predict oxidation extent was established based on experimental observations. The oxide scales mainly consisted of TiO2 with a small amount of Al2O3 and TiVO4. The alpha case was defined as solid solution formed because of oxygen diffusion into the substrate. The difference in the morphology and the formation mechanism of the alpha case at different temperature ranges was mainly owing to the participation of the grain boundary and grain orientation of the nucleation site. 相似文献
8.
9.
In this study, the high temperature oxidation behavior of HVOF-sprayed WC–12Co and WC–10Co–4Cr coatings were investigated. To explore the oxidation mechanism, thermo-gravimetric analysis (TGA) was applied for isothermal treatments in the range of 500–800 °C for 3 h. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to evaluate the structural changes and microstructural evolutions during oxidation tests. The TGA experiments showed negligible oxidation mass gains at 500 °C for both coatings. At higher temperatures, i.e. 700 and 800 °C, the oxidation mass gains of WC–12Co were found to be much higher than those for WC–10Co–4Cr coating, respectively. The higher oxidation resistance of WC–10Co–4Cr coating probably results from the formation of compact chromium oxide layers and higher MWO4 type tungstate (M: Co and/or Cr) to tungsten trioxide (WO3) ratios which provide lower porosity and consequently more efficient passivation effect against oxidation. The time dependent mass gain of WC–12Co coating obeys the linear law within temperature range of 600–800 °C with apparent oxidation activation energy of ~ 104 kJ/mol. As for the oxidation of WC–10Co–4Cr coating, a negligible deviation from linear law was observed possibly due to the presence of chromium oxide and higher tungstate to tungsten trioxide ratio which hinders the diffusion process through the scales compared with WC–12Co coating. The apparent activation energy for oxidation of the WC–10Co–4Cr coating was found to be ~ 121 kJ/mol. 相似文献
10.
G. Cassar J.C. Avelar-Batista Wilson S. Banfield J. Housden A. Matthews A. Leyland 《Surface & coatings technology》2012,206(22):4553-4561
In this study, triode plasma oxidation (TPO) has been used to improve the tribological characteristics of Ti–6Al–4V. The effect of TPO on ball-on-plate reciprocating-sliding, impact, and micro-abrasion wear resistance of this alloy is investigated. Surface micro-profilometry, nano-/micro-indentation hardness testing, scratch-adhesion testing, scanning electron microscopy (SEM), atomic force microscopy (AFM), glancing-angle X-ray diffraction (GAXRD), and glow-discharge optical emission spectroscopy (GDOES) data is presented to corroborate the effects of the oxidation process. ‘Traditional’ thermal oxidation processes were used to benchmark this novel treatment. Following TPO treatment at 700 °C for only 4 h, a hard (exceeding 11 GPa) and well-adhered oxide layer, composed of mixtures of the anatase and rutile polymorphs of TiO2, was formed at the surface of the Ti-alloy. This layer is accompanied by a much larger oxygen-solution strengthened zone which creates a gradual chemical and mechanical gradient from the hard oxide ‘compound layer’ into the ductile substrate core. The various wear testing methods employed revealed excellent wear resistance of the TPO-treated alloy—compared both to the untreated alloy and to conventional, thermally oxidised samples. 相似文献
11.
Zhang Yifei Li Jianzhong Che Shuanghang Tian Yanwen 《Metals and Materials International》2020,26(6):783-792
Metals and Materials International - In this present paper, the electropolishing behavior of Ti–6Al–4V alloy fabricated by additive manufacturing in chloride-containing ethylene glycol... 相似文献
12.
Titanium and its alloys have been commonly used for biomedical implant applications for many years; however, associated high coefficient of friction, wear characteristics and low hardness have limited their long term performance. This article investigates the effects of the high speed laser surface modification of Ti–6Al–4V on the microstructure, surface roughness, meltpool depth, phase transformation, residual strain, microhardness, and chemical composition. Laser treatment was carried out using a 1.5 kW CO2 laser in an argon gas environment. Irradiance and residence time were varied between 15.7 to 26.7 kW/mm2 and 1.08 to 2.16 ms respectively. Laser treatment resulted in a 20 to 50 μm thick surface modified layer without cracks. An increase in residence time and irradiance resulted in higher depth of processing. Surface roughness was found to decrease with increase in both irradiance and residence time. Metallography showed that a martensite structure formed on the laser treated region producing acicular α-Ti nested within the aged β matrix. The laser treatment reduced volume percentage of β-Ti as compared to the non-treated surface. Lattice stains in the range of 0.81% to 0.91% were observed after laser surface modification. A significant increase in microhardness was recorded for all laser treated samples. Microhardness increased up to 760 HV0.05 which represented a 67% increase compared to the bulk material. Energy Dispersive X-ray Spectroscopy (EDS) analysis showed that laser surface modification produced a more homogenous chemical composition of the alloying elements compared to the untreated bulk metal. 相似文献
13.
14.
J. Dutta Majumdar I. Manna Ajeet Kumar P. Bhargava A.K. Nath 《Journal of Materials Processing Technology》2009,209(5):2237-2243
In the present study, attempts have been made to fabricate Co layers on the surface of Ti–6Al–4V substrate with a compositionally graded interface by direct laser cladding. Laser processing is carried out by pre-placing the powder (or powder blends) on the substrate, and melting it using a high power continuous wave CO2 laser with Ar as shrouding gas. A compositionally graded interface is developed by applying powder blends of Ti to Co at a ratio of 90:10 near to Ti–6Al–4V substrate to 10:90 prior to development of Co layer. A defect-free microstructure is developed with the presence of Ti2Co and TiCo and Co2Ti at the interface. The volume fraction of individual phase was found to vary with the depth from the Co-clad zone. A significant improvement in microhardness is achieved at the interfacial region. Uniform corrosion resistance increases along the graded interface, but the pitting corrosion resistance is marginally deteriorated. Direct laser clad layer possesses a better biocompatibility than that of as-received Ti–6Al–4V sample. 相似文献
15.
《Surface & coatings technology》1999,111(2-3):172-176
The tribological properties of N+2-ion-implanted Ti alloy (Ti–6Al–4V) were studied by performing lubricated ball-on-disk tests against steel balls. The friction coefficients of N+2-ion-implanted disks ranged from 0.05 to 0.2, which were lower than that of the unimplanted disk. N+2-ion implantation reduced the volumetric wear rate of the disks as well as that of the steel balls. Moreover, the seizure limit of N+2-ion-implanted disk was increased. These improvements were remarkable for doses above 2.5×1017 ions cm−2. However, N+2-ion implantation did not monotonously improve the tribological properties with increasing ion dose. The results were not simply attributed to an increase in the surface microhardness by N+2-ion implantation. Surface analysis revealed that the structure consisted of titanium oxide on titanium, and titanium nitrides were formed by N+2-ion implantation. The observed transition in the tribological properties of Ti–6Al–4V alloy was discussed in terms of surface structure produced by N+2-ion implantation. 相似文献
16.
Laser melt injection of single-crystal WC particles (WCp) into Ti–6Al–4V was demonstrated to produce functionally graded materials (FGMs). A detailed electron microscopy examination was performed to study the microstructure of the FGMs. A thermal simulation experiment was designed to clarify the existing controversy about the formation of the W2C reaction layer. Twinning deformation occurred in the W2C layer can explain the absence of orientation relationships between the W2C layer and the parent phase WC during solid-phase transformation. A new W layer with a thickness of 200–300 nm at the WCp/Ti reaction zones is found. As a diffusion barrier, this W layer can suppress further dissolution of WCp and inhibit interfacial reactions. Although particle cracking is still the main failure mechanism, the tensile strength of the composites is increased by at least 17% when granular WCp is used instead of single-crystal WCp. 相似文献
17.
Study on the microstructures and properties of the boride layers laser fabricated on Ti–6Al–4V alloy
Coatings containing stick borides were produced by laser surface alloying of Ti–6Al–4V with powder mixtures of boron and titanium. The test results indicated that the coatings have high microhardness, excellent wear resistance and are more resistant to oxidation than the original sample. The size and the morphology of the borides vary with laser scanning speed, which have an effect on the properties of the coatings. 相似文献
18.
19.
Lore Thijs Frederik Verhaeghe Tom Craeghs Jan Van Humbeeck Jean-Pierre Kruth 《Acta Materialia》2010,58(9):3303-3312
Selective laser melting (SLM) is an additive manufacturing technique in which functional, complex parts can be created directly by selectively melting layers of powder. This process is characterized by highly localized high heat inputs during very short interaction times and will therefore significantly affect the microstructure. In this research, the development of the microstructure of the Ti–6Al–4V alloy processed by SLM and the influence of the scanning parameters and scanning strategy on this microstructure are studied by light optical microscopy. The martensitic phase is present, and due to the occurrence of epitaxial growth, elongated grains emerge. The direction of these grains is directly related to the process parameters. At high heat inputs it was also found that the intermetallic phase Ti3Al is precipitated during the process. 相似文献
20.
《Scripta materialia》2003,48(2):197-202
Equal channel angular pressing of Ti–6Al–4V alloy was successfully carried out isothermally above 600 °C. The equiaxed microstructure presented more uniform material flow than the Widmanstätten microstructure, which was discussed in relation to flow softening behavior of the two microstructures. 相似文献