首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
To evaluate the antibacterial property for diamond-like carbon films (DLC), DLC films were coated on textile material (cotton fibres) using a plasma-based ion implantation (PBII). Raman spectra show the DLC films were successfully coated on the cotton fibres. An antibacterial property of DLC film against two types of bacteria (Staphylococcus aureus, and Klebsiella pneumoniae) was investigated by the standard evaluation technique International Organization for Standardization (ISO) 20743. After incubation for 18 h, the number of cell colonies of the normal cotton fibres increased 100 times more than that of the initial condition. In contrast with the cotton fibres with DLC coating, no active bacteria could be observed after incubation for 18 h. X-ray photoelectron spectroscopy confirms that DLC coating formed C–H bond on cotton surface. Consequently, DLC film coating is a promising method to inhibit the increase of active bacteria. The DLC coatings are expected for biomedical applications with antibacterial property for coating of the commercial items.  相似文献   

2.
In this study, silicon-DLC film has been especially treated by plasma-enhanced chemical vapor deposition (PECVD) process at 500 °C in the same chamber without compound-layer for enhancement of hardness and adhesion. The effects of different levels of silicon content on the silicon-containing DLC films were tested in air condition at room temperature with relative humidity using a ball-on-disk tribometer. After the wear test, Raman spectrum analysis on the tested surface of silicon DLC showed the changed structure on the surface. Especially, it has shown the increasing hardness value in proportional to increase TMS gas rate after wear test. At the same time, it was shown that ID/IG values increased higher G-peak values and positions on wear track of silicon-containing DLC surfaces. Therefore, the structure of the coated DLC surface changed between the wear-tested surface and the original surface. High silicon content DLC showed increased IG value with suddenly increased ID/IG value after the wear test.  相似文献   

3.
The non-thrombogenicity of oxygen-plasma-treated DLC films was investigated as surface coatings for medical devices. DLC films were deposited on polycarbonate substrates by a radio frequency plasma enhanced chemical vapor deposition method using acetylene gas. The deposited DLC films were then treated with plasma of oxygen gas at powers of 15 W, 50 W, and 200 W. Wettability was evaluated by water contact angle measurements and the changes in surface chemistry and roughness were examined by X-ray photoelectron spectroscopy and atomic force microscope analysis, respectively. Each oxygen-plasma-treated DLC film exhibited a hydrophilic nature with water contact angles of 11.1°, 17.7° and 36.8°. The non-thrombogenicity of the samples was evaluated through the incubation with platelet-rich plasma isolated from human whole blood. Non-thrombogenic properties dramatically improved for both 15 W- and 50 W-oxygen-plasma-treated DLC films. These results demonstrate that the oxygen plasma treatment at lower powers promotes the non-thrombogenicity of DLC films with highly hydrophilic surfaces.  相似文献   

4.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

5.
DLC films were synthesized by RF plasma enhanced chemical vapor deposition and the effects of nitrogen plasma post-treatment at different pressures on the structure and properties of DLC films were investigated. Higher roughness was obtained after plasma post-treatment at higher pressures (0.3 and 0.9 torr) and plasma post-treatment at a lower pressure (0.15 torr) resulted in lower roughness than that of original films. The hardness of DLC films decreased with the decrease of post-treatment pressure, which is consistent with the Raman results of ID/IG ratio and G peak position. Compared to the original DLC film, the residual stress after plasma post-treatment decreased slightly due to the relatively thin region involved in the plasma post-treatment.  相似文献   

6.
Thin films of diamond-like carbon (DLC) containing titanium oxide (DLC-TiOx, x  2) were synthesized using a pulsed DC metal–organic plasma activated chemical vapor deposition (MOCVD) technique. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of TiO2 on the surface of the films. The compressive stress, elastic modulus and hardness of the films decreased with increasing Ti content. The water contact angle reduced from 62° for DLC to 45° for DLC-TiOx films containing 13.3 at.% of Ti. The biomimetic growth of amorphous carbonated apatite on the DLC-TiOx in simulated body fluid (SBF) was found and dependent on the Ti content of the film. UV light exposure prior to immersion in SBF increased the growth rate of apatite formation significantly as a result of increased hydrophilicity of the surface.  相似文献   

7.
High strength steel (HSS) is widely used for automobile reinforcement parts and the quantity required is rapidly grown. However, the strength and hardness of the steel are relatively high, its formability is very low and adhesion to tool material can be easily found under forming operation. This paper aimed to evaluate the anti-adhesion performance of commercial nitride and DLC films coated on cold work tool steel against HSS in forming operation. The friction coefficient and wear rate of the non-coated ball (SKD11; hardness 60 ± 2 HRC), balls coated with TiN-PVD, TiCN-PVD, AlTiN-PVD, Nitride + CrN and DLC have been evaluated in sliding contact against SPFH 590 (JIS) disk. The scratch and nano-indentation tests were done on each type of coated tools to characterize the adhesive strength between the film and the substrate, and the hardness and the elastic modulus, respectively. The anti-adhesion performance of various films coated tool in metal stamping process was also investigated by performing U-bending experiment. The cold roll carbon steel; SPCC (JIS) was also used to compare a material transfer problem to the case of using HSS (JIS: SPFH590). As the results, for HSS sheet, the adhesion of workpiece material on a non-coated die surface was detected after 49 strokes whereas adhesion could not be found in case of stamping SPCC sheet up to 500 strokes. The TiCN, AlTiN, and Nitride + CrN films showed good anti-adhesion performance when forming HSS, while the TiN and DLC films did not provide the satisfied results.  相似文献   

8.
Diamond-like carbon films containing up to 23.1 at. % of fluorine (F-DLC), were deposited onto silicon substrates by low-frequency, pulsed DC, plasma-activated, chemical vapour deposition (PACVD). The influence of fluorine on plasma current density, deposition rate, composition, bonding structure, surface energy, hardness, stress and biocompatibility was investigated and correlated with the fluorine content. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence C–C, C–CF and C–F for F-DLC films with a low fluorine concentration (1.5–12.1 at. %), however for films with a higher fluorine content (23.0 at. %) an additional peak due to CF2 bonding was detected. The addition of fluorine into the DLC film resulted in lower stress and hardness values. The reduction in these values was attributed to the substitution of strong C=C by weaker C–F bonds which induces a decrease in hardness. Ion scattering spectrometery (ISS) measurements revealed the presence of fluorine atoms in the outmost layer of the F-DLC films and there was no evidence of surface oxygen contamination. The water contact angle was found to increase with increasing fluorine content and has been attributed to the change of the bonding nature in the films, in particularly increasing CF and CF2 bonds. Biocompatibility tests performed using MG-63 osteoblast-like cell cultures indicated homogeneous and optimal tissue integration for both the DLC and the F-DLC surfaces. This pulsed-PACVD technique has been shown to produce biocompatible DLC and F-DLC coatings with a potential for large area applications.  相似文献   

9.
Electrochemically active diamond-like carbon (DLC) electrodes featuring high specific surface area have been prepared by plasma-enhanced chemical vapour deposition (CVD) onto densely packed forests of vertically aligned multiwall carbon nanotubes (VACNTs). The DLC:VACNT composite film exhibits a complex topography with web like features and ridges generated by partial coalescence of the DLC over the CNT arrays. DLC:VACNT electrodes exhibit low background responses over a large potential window, low uncompensated resistance, as well as low charge-transfer impedance in the presence of ferrocyanide as a redox probe. The interfacial capacitance associated with the DLC:VACNT electrode is in the range of 0.6 mF cm−2, a value two orders of magnitude larger than in conventional flat carbon electrodes. DLC films grown onto single-crystal Si(1 0 0) under identical conditions resulted in essentially insulating layers. Conducting-atomic force microscopy studies reveal that the film electro-activity does not arise from specific topographic features in the highly corrugated film. The ensemble of experimental results suggests that the enhanced electrochemical responses are not connected to areas in which the CNT support is exposed to the electrolyte solution. This is remarkable behaviour considering that no dopants have been included during the DLC film growth.  相似文献   

10.
Thin films of a novel, nanocomposite material consisting of diamond-like carbon and polycrystalline/amorphous TiOx (DLC-TiOx, x  2) were prepared using pulsed direct-current plasma enhanced chemical vapour deposition (PECVD). Results from Raman spectroscopy indicate that the DLC and TiOx deposit primarily as segregated phases. Amorphous TiO2 is found to be present on the surface region of the film and there is evidence for the presence of crystalline TiO in the bulk of the film. The hydrophilicity of the DLC-TiOx films increased with increasing titanium content. Culture studies with human osteoblasts revealed that the differences in three-day cell adhesion properties (count, morphology and area) between DLC and DLC-TiOx films containing up to 13 at.% Ti were not statistically significant. However, the cell count was significantly greater for the films containing 3 at.% of Ti in comparison to those containing 13 at.% of Ti. A post-plasma treatment with Ar/O2 was used to reduce the water contact angle, θ, by nearly 40° on the DLC-TiOx films containing 3 at.% of Ti. A cell culture study found that the osteoblast count and morphology after three days on these more hydrophilic films did not differ significantly from those of the original DLC-TiOx films. We compare these results with those for SiOx-incorporated DLC films and evaluate the long-term osteoblast-like cell viability and proliferation on modified DLC surfaces with water contact angles ranging from 22° to 95°.  相似文献   

11.
Diamond-like carbon (DLC) coatings were successfully deposited on carbon nanotube (CNT) films with CNT densities of 1 × 109/cm2, 3 × 109/cm2, and 7 × 109/cm2 by a radio frequency plasma-enhanced chemical vapor deposition (CVD). The new composite films consisting of CNT/DLC were synthesized to improve the mechanical properties of DLC coatings especially for toughness. To compare those of the CNT/DLC composite films, the deposition of a DLC coating on a silicon oxide substrate was also carried out. A dynamic ultra micro hardness tester and a ball-on-disk type friction tester were used to investigate the mechanical properties of the CNT/DLC composite films. A scanning electron microscopic (SEM) image of the indentation region of the CNT/DLC composite film showed a triangle shape of the indenter, however, chippings of the DLC coating were observed in the indentation region. This result suggests the improvement of the toughness of the CNT/DLC composite films. The elastic modulus and dynamic hardness of the CNT/DLC composite films decreased linearly with the increase of their CNT density. Friction coefficients of all the CNT/DLC composite films were close to that of the DLC coating.  相似文献   

12.
Surface modification of diamond-like carbon (DLC) film was performed using a hyperthermal atomic fluorine beam on the purpose of production of hydrophobic surface by maintaining the high hardness of DLC film. By the irradiation of atomic fluorine beam of a 1.0 × 1020 atoms/cm2, the contact angle of a water drop against the DLC surface increased from 73° to 111°. The formation of CF3, CF2 and CF bonding on the modified DLC surface was confirmed from the measurements of X-ray photoelectron spectra and near-edge X-ray absorption fine structure spectra. Irradiation of hyperthermal atomic fluorine beam was concluded to produce insulator fluorine-terminated DLC film, which has high F content on the surface, by the taking of the use of neutral atomic beam as a fluorine source.  相似文献   

13.
This paper describes the enhanced mechanical performance that can be achieved by the application of diamond-like carbon (DLC) coatings to polymer substrates. The polymers coated are silicone and polyethylene, and the effect on the friction coefficient is studied. Film adhesion is found to depend on the DLC film refractive index (n), whereas the friction is largely independent of n in the range studied. Films were deposited from a He/C2H2 mixture at 20 Pa (0.15 Torr) on to the polymer substrates placed on a 10-cm-diameter electrode driven at 13.56 MHz. Film growth was monitored by in-situ ellipsometry (at 675 nm), which was performed on a glass slide placed near the polymer substrate. Friction measurements were obtained using a pin-on-disk tribometer, and measurements were carried out using a stainless-steel pin at a linear speed of 6 cm s−1. Film adhesion was evaluated using a pull-adhesion tester. It was found that DLC coatings adhere well to the polymer substrates and can significantly reduce the friction coefficient of polymers such as silicone. Higher refractive index films (which are harder and have a higher mechanical strength) were found to have a poorer adhesion and provide a slightly increased friction on the polymer surface when compared to lower-index films. This study indicates that DLC may be used to enhance the tribological properties of polymers with potential applications in the biomaterials and light-engineering industries.  相似文献   

14.
We have deposited unhydrogenated diamond-like carbon (DLC) films on Si substrate by pulsed laser deposition using KrF excimer laser, and investigated the effects of atomic-hydrogen exposure on the structure and chemical bonding of the DLC films by photoelectron spectroscopy (PES) using synchrotron radiation and Raman spectroscopy. The fraction of sp3 bonds at the film surface, as evaluated from C1s spectra, increased at a substrate temperature of 400 °C by atomic-hydrogen exposure, whereas the sp3 fraction decreased at 700 °C with increasing exposure time. It was found that the sp3 fraction was higher at the surfaces than the subsurfaces of the films exposed to atomic hydrogen at both the temperatures. The Raman spectrum of the film exposed to atomic hydrogen at 400 °C showed that the clustering of sp2 carbon atoms progressed inside the film near the surface even at such a low temperature as 400 °C.  相似文献   

15.
Diamond-like carbon films exhibit high hardness, high wear resistance and a low friction coefficient. They are extensively utilized in the mechanical, electronic and biomedical industries. This work evaluates the effect of the thickness of ultra-thin diamond-like carbon nitride films on their corrosion properties and their wear-corrosion resistance in a mixed 1 M NaCl + 1 M H2SO4 solution using electrochemical methods. The corrosion current density and weight loss of all films during and after wear-corrosion test are also recorded. This work employs ion beam-assisted deposition (IBAD) to deposit DLC nitride films of various thicknesses (1.5, 2.0, 2.5 and 3.0 nm), containing 60% nitrogen gas in the form of a gaseous mixture of C2H2 + 60%N2. The thickness of the films was measured using a transmission electron microscope (TEM). The atomic bonding structures of these DLC nitride films are analyzed using a Raman spectrometer and by electron spectroscopy for chemical analysis (ESCA). A scanning electron microscope (SEM) was adopted to elucidate the surface morphologies of the specimens after corrosion and wear-corrosion. The results indicated that all of the nitrogen-containing DLC films excellently protected the 5088 Al–Mg alloy substrate with an electroless plated Ni–P interlayer against corrosion, and that the degree of protection increases with the thickness of the film. In the wear-corrosion tests various potentials were applied during wear in the particular corrosive solution. The results further demonstrated that the wear-corrosion resistance of all the nitrogen-containing DLC films was as effective as corrosion protection, and that the wear-corrosion loss decreased as the film thickness increased.  相似文献   

16.
Diamond-like carbon (DLC) films were obtained by spinning a tungsten carbide substrate at a high speed using an oxyacetylene flame. The films deposited at a typical experimental condition of substrate temperature of 810°C, rotation of 600 rpm and 3 h deposition time, exhibited an uniform, very smooth, hard and glassy surface covering the entire exposed face of the substrate. These films were identified as DLC by their characteristic broad Raman spectra centered at 1554 cm−1 and micro-Vicker's hardness >3400 kg mm−2. For substrate temperatures <800°C the film started losing the uniform glassy surface and the hardness deteriorated. For temperatures >950°C the film was still hard and shiny, but black in color. DLC films were also obtained in a wide range of speeds of rotation (300–750 rpm), as long as the temperature remained close to 850°C.  相似文献   

17.
DLC films were deposited by a new pulsed DC discharge plasma chemical vapour deposition (CVD) using hydrogen and methane gas mixture. When methane concentration (Cm) i.e. CH4/(H2 + CH4) was increased from 3 to 40%, the graphitization of the carbon film increases as evident from Raman study. When Cm was increased to 30%, DLC film shows photoconducting property. The white light photoconductivity (S = Il/Id, where Il is light current and Id is dark current) measured with solar simulator under AM 1.5 condition was approximately 20 at room temperature. The photoconductivity was not clear when Cm was lower than 20%. ESR measurements also show that the electron spin density was slightly decreased with decreasing concentration of methane. Thus we can conclude here that at higher concentrations of methane at 30%, Sp2 content of the film increases and the DLC film becomes photoconducting.  相似文献   

18.
A technique to coat hydrogen-free diamond-like carbon (DLC) films on polytetrafluoroethylene (PTFE) substrates has been developed by sputtering of a negatively biased graphite target in a mixture of argon and nitrogen plasma. The coated films were characterized by various methods to investigate their chemical, electronic features, and particularly their biomedical properties. DLC films produced by this method have up to 20% sp3 carbon bonds depending on the nitrogen concentration in the plasma. Raman spectroscopy revealed that, bond-disorder increases with nitrogen doping. The average grain size of DLC decreases in the nitrogen doped samples by almost 30%. The roughness of the uncoated PTFE substrate surfaces decreased dramatically from 660 nm to 170 nm after DLC coating. However, the nitrogen contents in the plasma have little effects on the roughness, the cluster size, and shapes. Electronic band gap of the samples decreases with adding nitrogen from ~ 2 eV in nitrogen-free samples to ~ 1 eV in nitrogenated samples. Lower adhesion and aggregation of platelets on PTFE surfaces coated with DLC-10% nitrogen and DLC-20% nitrogen have been observed while there is greater adhesion of platelets on DLC-30% nitrogen and DLC-40% nitrogen.  相似文献   

19.
A duplex plasma immersion ion implantation and deposition (PIIID) process, involving carbon ion implantation and diamond-like carbon (DLC) deposition, is proposed to modify the inner surface of a tube. In the research, samples of GCr15 bearing steel were placed inside a tube in the vacuum chamber. After the vacuum chamber was evacuated to a base pressure of 6 × 10 3 Pa, C2H2 gas was introduced into the chamber, and the tube was biased by a negative pulsed bias. Since a pulsed glow discharge (PGD) plasma can be formed by the bias, carbon ion implantation and DLC film deposition process can be obtained by biasing the tube with a high and low bias, respectively. To synthesize different DLC films, single PIIID processes employing a low voltage (several kV) PGD method and duplex PIIID processes combining the high (several tens kV) and low voltage PGD techniques were carried out. The as-synthesized films were characterized by Raman spectrum, nano-indentation, scratch, tribological and electrochemical tests. Raman results show that duplex DLC films were synthesized by this duplex PIIID process. In addition, compared with the single DLC film synthesized by the low voltage PGD process, the duplex DLC films can obtain a high wear and corrosion resistances. Furthermore, using this duplex PIIID method, batch treatment of outer-rings of the bearing was realized.  相似文献   

20.
Friction and wear behaviors of diamond-like carbon (DLC) film sliding against steel ball were investigated on a ball-on-disk test rig at different relative humidity (RH) in a nitrogen environment. The worn surface morphology of the steel ball was observed on a scanning electron microscope (SEM), while the chemical states of some typical elements on the worn surface of DLC film were investigated by means of X-ray photoelectron spectroscopy (XPS). The result showed that the DLC film recorded continuously increased friction coefficient and wear rate with increasing relative humidity from 5% to 100%. In dry nitrogen (RH < 5%), thick and compact transferred carbon-rich layer was observed covering on the worn surface of steel ball, while the chemical states of the original and worn film surface showed no obvious change. In humid nitrogen, distinct changes of the chemical states on the worn surface of DLC film took place, indicating that tribochemical reactions such as the oxidation of DLC film and the interactions between DLC film and steel ball were involved in the friction process. Therefore, it was proposed that the friction and wear behaviors of DLC film were dependent on the friction-induced physical and chemical interactions among DLC film, steel ball and water and/or oxygen molecules. The roles of environment in the friction and wear behaviors of DLC film were discussed in terms of the friction-induced physical and chemical interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号