首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method for generating free gaits for quadruped robots capable of performing statically stable, omnidirectional locomotion on irregular terrain containing forbidden areas. The rule-based deliberative algorithm can generate flexible sequences of leg transferences while maintaining constant vehicle speed. The foothold planning method is compatible with the use of these flexible leg sequences, and is designed to maintain a minimum absolute stability margin despite the terrain height uncertainty. The integration of exteroceptive terrain profile data has been considered to improve adaptability. Experimental results are presented to show the gait's efficiency in adapting to an irregular terrain containing forbidden areas.  相似文献   

2.
Dynamic simulation is an important aspect of legged robotic research, which is essential for its design and control. However, the dynamics of the interaction between a soft terrain and a deformable leg (e.g., a spring) is hardly taken into account. In this paper, a high-fidelity, faster-than-real-time simulation system for hexapod robots has been developed based on Vortex. Foot-terrain interaction mechanics and flexible mechanical system are taken into account in order to improve the simulation precision. A general foot-terrain interaction model is presented based on terramechanics. Pseudo-rigid-body method is used to simulate the flexibility of the robot. A speed test shows that the simulation system is capable of real-time or faster simulation. The simulation system's fidelity was validated using two hexapod robots, which is found to be greater than 90%.  相似文献   

3.
4.
We report on a hybrid 12-dimensional full body state estimator for a hexapod robot executing a jogging gait in steady state on level terrain with regularly alternating ground contact and aerial phases of motion. We use a repeating sequence of continuous time dynamical models that are switched in and out of an extended Kalman filter to fuse measurements from a novel leg pose sensor and inertial sensors. Our inertial measurement unit supplements the traditionally paired three-axis rate gyro and three-axis accelerometer with a set of three additional three-axis accelerometer suites, thereby providing additional angular acceleration measurement, avoiding the need for localization of the accelerometer at the center of mass on the robot's body, and simplifying installation and calibration. We implement this estimation procedure offline, using data extracted from numerous repeated runs of the hexapod robot RHex (bearing the appropriate sensor suite) and evaluate its performance with reference to a visual ground-truth measurement system, comparing as well the relative performance of different fusion approaches implemented via different model sequences.  相似文献   

5.
Future planetary exploration missions will require wheeled mobile robots ("rovers") to traverse very rough terrain with limited human supervision. Wheel-terrain interaction plays a critical role in rough-terrain mobility. In this paper, an online estimation method that identifies key terrain parameters using on-board robot sensors is presented. These parameters can be used for traversability prediction or in a traction control algorithm to improve robot mobility and to plan safe action plans for autonomous systems. Terrain parameters are also valuable indicators of planetary surface soil composition. The algorithm relies on a simplified form of classical terramechanics equations and uses a linear-least squares method to compute terrain parameters in real time. Simulation and experimental results show that the terrain estimation algorithm can accurately and efficiently identify key terrain parameters for various soil types.  相似文献   

6.
In this paper, we present a method of determining optimal gaits for shape actuated locomotion systems. This method is the synthesis of techniques for computing reduced equations for robotic locomotion systems and a numerical optimal control strategy. Symmetry reduction processes induce a form of locomotion system dynamics that reveals a cyclic-like coupling between group, shape, and momenta coordinates. This form allows one to focus on designing gaits, abandoning concern over shape dynamics. Using this vantage point we indicate how a numerical optimal control method based on Gaussian quadrature may be acclimatized to periodicity, thus providing optimal gaits. The method is demonstrated by means of its application to a snake-like serial-link structure or snake robot. This application provides scientific merit to hypotheses concerning observed locomotion phenomena amongst animals employing undulatory propulsive mechanisms.  相似文献   

7.
As seen earlier POS is a general agent conversation protocol engineering formalism that has proved efficient when used in communities of software information agents. The aim of this paper is to show how much POS is simple, easy to use, and very appropriate for implementing interaction protocols in a collaborative agent setting. In order to exemplify our approach we focus on an application domain with real time constraints such as soccer robots and show how an inherently symbolic abstract system like POS can be neatly integrated with agents whose internal architecture is reactive and relies on bottom-up behavior-based techniques. First, we shortly discuss aspects of heterogeneity with respect to soccer robots and present the RoboCup experimental setting. Then we sketch the difficulties that arise when trying to coordinate an heterogeneous team with conventional methods. In response, we introduce some elements of the POS (Protocol Operational Semantics) model. The following sections examine several basic behaviors of the JavaSoccer simulation environment as it is later used along with TeamBots to highlight POS’ capabilities, demonstrate how POS is a suited theoretical tool and leads to extremely compact and modular code due to its high expressive power, and discuss the obtained results. Finally we conclude the article with a comparison to related works as well as some perspectives about the engineering of interaction protocols.  相似文献   

8.
This paper presents a procedure to optimize parametrization and scale for terrain-based environmental modeling. The workflow was exemplified on crop yield data, which is assumed to represent a proxy for soil productivity. Focal mean statistics were used to generate different scale levels of terrain derivatives by increasing the neighborhood size in calculation. The degree of association between each terrain derivative and crop yield values was established iteratively for all scale levels through correlation analysis. The first peak of correlation indicated the scale level to be further retained. To select the best combination of terrain parameters that explains the variation of crop yield, we ran stepwise multiple regressions with appropriately scaled terrain parameters as independent variables. These techniques proved that the mean curvature, filtered over a neighborhood of 55 m, together with slope, made up the optimal combination to account for patterns of soil productivity.To illustrate the importance of scale, we compared the regression results of unfiltered and filtered mean curvature vs. crop yield. The comparison shows an improvement of R2 from a value of 0.01 when the curvature was not filtered, to 0.16 when the curvature was filtered within 55×55 m neighborhood size.The results were further used in an object-based image analysis environment to create terrain objects containing aggregated values of both terrain derivatives and crop yield. Hence, we introduce terrain segmentation as an alternative method for generating scale levels in terrain-based environmental modeling, besides existing per-cell methods. At the level of segments, R2 improved up to a value of 0.47.  相似文献   

9.
Mechatronics is the integration of mechanism, electronics and computer control to produce a functional system. The design process involves application of many engineering areas and various approaches are possible. Computer programs are available in different engineering areas. Engineers define systems and inputs, and user-friendly programs establish mathematical models, solve them and give simulation outputs. In this study, SolidWorks is used for solid modeling and assembly, CosmosMotion is used for rigid body dynamics, CosmosWorks is used for finite element vibration and strength analyses, and Adlink module is used for actuator control. The integration of the design process is achieved with a main program developed in Visual Basic, which uses the application programming interface (API) capabilities. The procedure is applied to a hexapod robot. The robot has been produced to develop and test the procedure. CosmosMotion results are verified by the analytical results obtained from the dynamic equations of the hexapod. Besides known kinematic workspace definition of robots, kinetic and rigidity workspace concepts are introduced. Mechatronic systems can be designed and evaluated easily and effectively by using the design process developed in this work.  相似文献   

10.
Discriminating or classifying different terrains is an important ability for every autonomous mobile robot. A variety of sensors, preprocessing techniques, and algorithms in different robots were applied. However, little attention was paid to the way sensory data was generated and to the contribution of different sensory modalities. In this work, a quadruped robot traversing different grounds using a variety of gaits is used, equipped with a collection of proprioceptive (encoders on active, and passive compliant joints), inertial, and foot pressure sensors. The effect of different gaits on classification performance is assessed and it is demonstrated that separate terrain classifiers for each motor program should be employed. Furthermore, poor performance of randomly generated motor commands confirms the importance of coordinated behavior on sensory information structuring. The collection of sensors sensitive to active, “tactile”, terrain exploration proved effective. Among the individual modalities, encoders on passive compliant joints delivered best results.  相似文献   

11.
This paper presents the implementation of impedance control for a hydraulically driven hexapod robot named COMET‐IV, which can walk on uneven and extremely soft terrain. To achieve the dynamic behavior of the hexapod robot, changes in center of mass and body attitude must be taken into consideration during the walking periods. Indirect force control via impedance control is used to address these issues. Two different impedance control schemes are developed and implemented: single‐leg impedance control and center of mass‐‐based impedance control. In the case of single‐leg impedance control, we derive the necessary impedance and adjust parameters (mass, damping, and stiffness) according to the robot legs' configuration. For center of mass–based impedance control, we use the sum of the forces of the support legs as a control input (represented by the body's current center of mass) for the derived impedance control and adjust parameters based on the robot body's configuration. The virtual forces from the robot body's moment of inertia are adapted to achieve optimal control via a linear quadratic regulator method for the proposed indirect attitude control. In addition, a compliant switching mechanism is designed to ensure that the implementation of the controller is applicable to the tripod sequences of force‐based walking modules. Evaluation and verification tests were conducted in the laboratory and the actual field with uneven terrain and extremely soft surfaces. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
In this article, a learning control design method for analyzing the convergence of nonlinear systems described by a class of differential-algebraic equations1 is developed. This method generalizes the previous methods for the study of the learning control problem of constrained mechanical systems to include a wider class of systems. Furthermore, the proposed design method allows us to analyze the role of force learning in the learning control of such a control system. We derive a sufficient condition for the convergence of both the motion and contact force of the systems as the operations are repeated. An application of the proposed controller to robotic manipulators with holonomic constraints is discussed, and simulation results of a constrained cylindrical robot are presented. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
计算智能在移动机器人路径规划中的应用综述   总被引:1,自引:0,他引:1  
移动机器人路径规划是建立在机器人定位与避障研究之上,进一步对机器人行为的深入.在给出人工神经网络(ANN)、模糊逻辑(FL)、遗传算法(GA)等计算智能原理性方法的基础上,从一般意义讨论了各类计算智能方法用于路径规划的切入点,研究了各类算法的实现机理与设计思想.最后结合目前的技术发展趋势,对路径规划问题未来可能的研究发展方向进行了探讨.  相似文献   

14.
15.
Insects can perform versatile locomotion behaviors such as multiple gaits, adapting to different terrains, fast escaping, etc. However, most of the existing bio-inspired legged robots do not possess such walking ability, especially when they walk on irregular terrains. To tackle this challenge, a central pattern generator (CPG)-based locomotion control methodology is proposed, integrated with a contact force feedback function. In this approach, multiple gaits are produced by the CFG module. After passing through a post-processing circuit and a delay-line, the control signal is fed into six trajectory generators to generate predefined feet trajectories for the six legs. Then, force feedback is employed to adjust these trajectories so as to adapt the robot to rough terrains. Finally the regulated trajectories are sent to inverse kinematics modules such that the position control instructions are generated to control the actuators. In both simulations and real robot experiments, we consistently show that the robot can perform sophisticated walking patterns. What is more, the robot can use the force feedback mechanism to deal with the irregularity in rough terrain. With this mechanism, the stability and adaptability of the robot are enhanced. In conclusion, the CPG-base control is an effective approach for legged robots and the force feedback approach is able to improve walking ability of the robots, especially when they walk on irregular terrains.  相似文献   

16.
Mobile robots are being developed for building inspection and security, military reconnaissance, and planetary exploration. In such applications, the robot is expected to encounter rough terrain. In rough terrain, it is important for mobile robots to maintain adequate traction as excessive wheel slip causes the robot to lose mobility or even be trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The algorithm estimates the stick-slip of the wheels based on estimation of angular acceleration. Thus, the traction force induced by torque of wheel converses between the maximum static friction and kinetic friction. Simulations and experiments are performed to validate the algorithm. The proposed traction control algorithm yielded a 40.5% reduction of total slip distance and 25.6% reduction of power consumption compared with the standard velocity control method. Furthermore, the algorithm does not require a complex wheel-soil interaction model or optimization of robot kinematics.  相似文献   

17.
18.
19.
In this paper, we investigate the output consensus problem of tracking a desired trajectory for a class of systems consisting of multiple nonlinear subsystems with intrinsic mismatched unknown parameters. The subsystems are allowed to have non-identical dynamics, whereas with similar structures and the same yet arbitrary system order. And the communication status among the subsystems can be represented by a directed graph. Different from the traditional centralized tracking control problem, only a subset of the subsystems can obtain the desired trajectory information directly. A distributed adaptive control approach based on backstepping technique is proposed. By introducing the estimates to account for the parametric uncertainties of the desired trajectory and its neighbors’ dynamics into the local controller of each subsystem, information exchanges of online parameter estimates and local synchronization errors among linked subsystems can be avoided. It is proved that the boundedness of all closed-loop signals and the asymptotically consensus tracking for all the subsystems’ outputs are ensured. A numerical example is illustrated to show the effectiveness of the proposed control scheme. Moreover, the design strategy is successfully applied to solve a formation control problem for multiple nonholonomic mobile robots.  相似文献   

20.
Multimedia Tools and Applications - In this paper, a new multimodal compression scheme is proposed with the aim of compressing jointly an image and a signal via a single codec. The key idea behind...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号