首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.  相似文献   

2.
ZnO tetrapods have been grown on silicon substrates by chemical vapor deposition, and the effect of synthesis conditions on their morphology and size has been studied. The cathodoluminescence spectra of the tetrapods show two emissions characteristic of ZnO, in the UV and green spectral regions. Their relative intensities depend on the vapor composition during synthesis and annealing conditions. A mechanism of tetrapod growth at significant supersaturations is discussed.  相似文献   

3.

In this paper, a hydrothermal method was applied to synthesize the nanosheet-like pure ZnO and 0.5%, 1 and 3% Co-doped ZnO (Co-ZnO). The pristine and Co-doped ZnO flower-like particles were assembled by porous nanosheets, with the uniform diameter about 18 μm. The N2-BET test found that Co doping significantly increased the specific surface area of the material which was conducive to gas diffusion and adsorption. HRTEM presented that 1% Co-ZnO nanosheets were composed of coral-like nanoparticles. The lattice distances 0.259 nm and 0.276 nm correspond to (002) and (100) crystal plane of ZnO. The gas sensing properties reveal that the 1% Co-doped ZnO present an outstanding enhanced sensitive performance comparing with pure ZnO to ethanol. To 100 ppm target gas, the response increased from 103 to 279.8 and the optimal operating temperature decreased from 369 to 348 °C, and the recovery time decreased from 40 to 18 s. The increased surface carrier concentration which promoted oxygen adsorption by Co was considered to be the key factor to improve the performance.

  相似文献   

4.
One-dimensional (1D) ZnO microwires were successfully synthesized by chemical vapor deposition and their structural and morphological properties were analyzed by X-ray diffraction and scanning electron microscopy, demonstrating that the microwires were single crystalline with perfect hexagonal structure and smooth surface. Using these 1D microstructures, we fabricated a novel ZnO-based ethanol gas sensor. Operating at room temperature, the sensor was found to have good sensing characteristics. The reliability and stability of the sensor could be improved by connecting multiple 1-wire devices (1-WD) in parallel into a multi-wires device. In interior natural lighting environment and under 3 V bias, the response and recovery time of the 1-WD to 200 ppm ethanol gas were <10 s and about 300 s, respectively, and the minimum and maximum detection limit were about 2 and 200 ppm, respectively. A sensing model was proposed for discussing the performance of the sensor. The simplicity in fabrication, low power consumption and low cost make the sensor suitable for practical application in many fields, especially in identifying driving under the influence and chemical industry monitoring.  相似文献   

5.
While there’s a perpetual buzz around zinc oxide superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the hierarchical structures of ZnO for volatile sensing applications has ample scope to accommodate new unconventional morphologies. Likewise, this article presents self-catalytic synthesis of Sn-doped ZnO nanotetrapods on Si (1 0 0) substrates through thermal evaporation–condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of acetone and ammonia below their permissible exposure limits which returned sensitivities of around 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The features for the nanoprisms include a length of few micrometers along with a diameter ranging from 300 to 500 nm. High resolution microscopic images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material.  相似文献   

6.
7.
通过化学气相沉积法(CVD)合成出梳状分等级结构的ZnO纳米带,使用场发射扫描电子显微镜(SEM)和X射线衍射仪(XRD)对材料组成和结构进行了分析。利用这种材料制备了厚膜型管式气敏元件,并采用静态配气测试系统进行了气敏性能测试。测试结果表明,工作温度大约为225℃时,这种结构的材料对有机挥发性气体(volatile organic compounds,VOC)具有极快的响应和恢复速度,响应时间为2s,恢复时间为3s。最后分析了材料结构对气敏性能的影响。  相似文献   

8.
Wang YG  Sakurai M  Aono M 《Nanotechnology》2008,19(24):245610
We have developed a flowing gas phase reaction method for synthesizing ZnO nanotetrapods. The synthesis was carried out in a tube furnace under air pressure using air and nitrogen as reactive and carrying gases. The zinc precursor was provided by carbothermal reduction of ZnO powder. The source material transformation efficiency is higher than 90%. ZnO nanotetrapods were nucleated and grown in the gas phase via a vapor-solid mechanism. The reaction occurred at a temperature controlled to 1050-1200?°C and gas flow rate controlled to 0.7-2?L/min. The high flow rate suppressed the diffusion of growth precursors and productions towards the tube wall, and localized them into a gas phase pipe. The harvested ZnO nanotetrapods were carried by the flowing gas and collected outside of the furnace. The sizes of the nanotetrapods range from several hundred nanometers to more than 10?μm with leg diameters of 30-200?nm. The flowing gas phase reaction method provides a relatively uniformity environment for nanotetrapod growth and simplifies the product collection procedure compared with other techniques. This technique is simple and inexpensive, which is promising for realizing continuous mass production of ZnO nanotetrapods on a factory scale.  相似文献   

9.
《中国测试》2015,(11):68-72
针对煤矿生产中需要对甲烷气体浓度进行监测的需求,设计一种基于新型氧化锌传感器的矿井气体无线监测系统,介绍氧化锌传感器的特性以及系统的硬件构成。系统主要由传感器、调理电路、数据采集电路、电源模块、显示模块及Zig Bee无线通信模块组成。最后通过试验测试该系统对甲烷气体的监测性能,试验结果表明:该系统可以实现对甲烷气体浓度的有效监测。  相似文献   

10.
We prepared ZnO/n-Si heterojunctions by depositing ZnO films on n-Si substrates with different resistivities by radio-frequency magnetron sputtering. The microstructure of ZnO film was analyzed by X-ray diffraction and scanning electron microscopy. The current-voltage characteristics and ethanol gas sensing properties of the junctions were investigated at room temperature. It is found that optimization of n-Si substrate resistivity is critical to enhance the ethanol gas sensitivity of ZnO/n-Si heterojunction. The ZnO/n-Si heterojunction with n-Si substrate of 2-3 Ω cm exhibits the best ethanol gas sensing property. The junction shows the sensitivity of 29.41% to 0.24 g/L ethanol gas under + 0.52 V forward bias voltage.  相似文献   

11.
采用热蒸发法成功制备氧化锡纳米线。用X射线衍射、扫描电子显微镜和透射电子显微镜对所制备纳米线的晶格结构和表面形貌进行表征。所制材料为金红石氧化锡单晶结构,纳米线直径为50~200nm,长度为5~15μm,符合气-液-固生长机制。以氧化锡为气敏材料,制备了旁热式结构气敏元件,测试该元件对浓度范围为25×10^-6 ~500×10^-6 的乙醇气体环境的敏感性能。结果表明,该元件的最佳工作温度约为260℃;在25×10^-6 和500×10^-6 的乙醇气体中,灵敏度分别为7.54和111.01,响应时间为2~20s,恢复时间为5~33s;在测试范围内灵敏度与气体浓度具有良好的线性关系;7天内重复测量误差在5%以内,稳定性较好。  相似文献   

12.
In the present paper, Ti doped ZnO films with higher conductive properties were grown on room temperature glass substrates by radio frequency magnetron sputtering and followed by annealing in vacuum. The microstructures and surface figures of the films were investigated by X-ray diffraction and scanning electronic microscopy, and its optical and electrical properties were measured using a four-point probe technique and 756-type spectrophotometer at room temperature. The results show that the preferred growth orientation of the films is (002) orientation, and after annealing in vacuum at 400 °C for 3 h, the average transmittance reduces from 90 to 80%, and resistivity reduces from 4.53 × 10?2 to 8.78 × 10?4 Ω cm.  相似文献   

13.
Flower-like ZnO 3D microstructures composed of nanorods have been successfully prepared via a facile hydrothermal method using p-nitrobenzoic acid as the structure-directing agent. The structures and morphologies of the final products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM). The possible mechanism for the synthesis of the flower-like ZnO microstructures has been proposed primarily. The gas sensitivity of the flower-like ZnO microstructures has been studied to a series of organic vapors at different operation temperatures and vapor concentrations. The results show that the flower-like ZnO microstructures composed of nanorods have good gas sensor properties to ethanol.  相似文献   

14.
Xiying Ma 《Thin solid films》2012,520(17):5752-5755
We present a study of the ferromagnetic properties of Gd doped ZnO nanowires (Nws) fabricated by means of a chemical vapor deposition process. The sample was grown with a Gd mole ratio 5% in a mixed Zn/Mn source under a constant O2/Ar gas mixture flowing at 580 °C followed by annealing at 800 °C. We found that the magnetic properties of ZnO:Gd Nws are a function of the external magnetic field and temperature. An average value of the moment per Gd atom is as high as 3278 μB as compared to its atomic moment of 8 μB, showing that the ZnO:Gd Nws are an intrinsic diluted magnetic semiconductor. The unprecedented colossal moment is attributed to the effective Ruderman-Kittel-Kasuya-Yosida exchanging interaction.  相似文献   

15.
16.
A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.  相似文献   

17.
纳米ZnO气敏元件对H2的测定研究   总被引:1,自引:0,他引:1  
以采用物理热蒸发法制备的纯ZnO纳米线以及Ag掺杂ZnO纳米线为气敏基料制备成旁热式气敏元件,用静态配气法对不同浓度的H2进行气敏性能测试。利用测试结果,绘制元件灵敏度与所测气体浓度的关系曲线,并对此曲线进行了线性拟合。结果表明,Ag掺杂纳米ZnO元件与纯纳米ZnO元件相比会明显提高对H2的灵敏度,两类元件的气敏性能与所测气体浓度呈现相同的变化规律。用拟合方程计算出的气体浓度值与实际检测值间吻合较好,误差小于10%。因此,可以利用这两类元件及其拟合直线对H2气体浓度进行测定。  相似文献   

18.
ZnO and ZnO:Eu nanorods were originally synthesized by concussion method. The nanorods present a wurtzite nanostructure with dispersive distribution morphology. The average diameter and length of the nanorods are about 80 nm and 2 μm, respectively. The best concussion time, concussion frequency, the function of HMT and the growth mechanism are presented in this paper. This method is simple, economical, and environmentally mild. We believe other kinds of ZnO nanostructures could be obtained by this method when appropriate agents are added. However, because of the different chemical properties between trivalent RE ions and the cations of ZnO, it is rather difficult to incorporate RE ions into the lattice of semiconductors effectively via a wet chemical method. Based on our experiments, the sample of $ {\text{ZnO}}:{\text{Eu}}^{3 + }_{1\% } $ is single-phase and its PL signal is stronger than other single-phase $ {\text{ZnO}}:{\text{Eu}}^{3 + }_{X} $ samples. So 1% content of Eu3+ was chosen as the best doping concentration.  相似文献   

19.
Zinc oxide (ZnO) thin films are prepared using sol–gel method for acetone vapor sensing. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) was taken as starting material and a stable and homogeneous solution was prepared in ethanol by deliquescing the zinc acetate and distinct amount of monoethanolamine as a stabilizing agent. The prepared solution was then coated on silicon substrates by spin coating method and then annealed at 650 °C for preparing ZnO thin films. The thickness of the film was maintained at 410 nm. The structural, morphological and optical studies were done for the synthesized ZnO thin films. The operating temperature and sensor response is considered to be an important parameter for the gas sensing behavior of any material. Therefore, the present study examined the effect of sensing behavior of 3% v/v gold (Au) doped ZnO thin films as a sensor. The response characteristics of 410 nm ZnO thin film for temperature ranging from 180 to 360 °C were determined for the acetone vapors. The reported study provides a significant development towards acetone sensors, where a very high sensitivity with rapid response and recovery times are reported with lowered optimal operating temperature as compared to bare ZnO nano-chains like structured thin films. In comparison to the bare ZnO thin films giving a response of 63 at an operating temperature of 320 °C, a much better response of 132.3 was observed for the Au doped ZnO thin films at an optimised operating temperature of 280 °C for a concentration of 500 ppm of acetone vapors.  相似文献   

20.
Journal of Materials Science: Materials in Electronics - Gas sensors are widely used because of their high sensitivity, low cost and simple fabrication. The development of high-performance ethanol...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号