首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The film depth of a free-surface suspension flowing in a partially filled horizontal concentric-cylinder, or Couette, device has been studied in order to assess its role in the axial concentration banding observed in this flow. The flow is driven by rotation of the inner cylinder. The banding phenomenon is characterized by particle-rich bands which under flow appear as elevated regions at the free surface separated axially by regions dilute relative to the mean concentration. The concentric cylinders studied had outer radius R(o) = 2.22 cm and inner radii R(i) = 0.64, 0.95 and 1.27 cm; the suspension, of bulk particle volume fraction phi = 0.2 in all experiments described, was composed of particles of either 250-300 microm diameter or less than 106 microm diameter, with the suspending fluid an equal density liquid of viscosity 160 P. The ratio of the maximum to the minimum particle volume fraction along the axis in the segregated condition varies from O(1) to infinite. The latter case implies complete segregation, with bands of clear fluid separating the concentrated bands. The film depth has been varied through variation of the filled fraction, f, of the annular gap between the cylinders and through the rotation rate. Film depth was analysed by edge detection of video images of the free surface under flow, and the time required for band formation was determined for all conditions at which film depth was studied. The film depth increases roughly as the square root of rotation speed for f = 0.5. Band formation is more rapid for thicker films associated with more rapid rotation rates at f = 0.5, whereas slower formation rates are observed with thicker films caused by large f, f > 0.65. It is observed that the film depth over the inner cylinder grows prior to onset of banding, for as yet unknown reasons. A mechanism for segregation of particles and liquid in film flows based upon 'differential drainage' of the particle and liquid phase in the gravity-driven flow within the film over the inner cylinder is formulated to describe the onset of concentration fluctuations. This model predicts that suspension drainage flows lead to growth of fluctuations in phi under regions of negative surface curvature.  相似文献   

2.
The mixing and segregation of granular materials are essential to provide valuable insights and references for practical industrial production. In this paper, the segregation behaviors of particles with Gaussian distributions and 40% filling level in the rotating drum with rolling regime were numerically studied by the discrete element method. The effects of rotation speed and particle size parameter λ (size ratio of the largest versus smallest particles) on the segregation behavior (mixing index, segregation rate), flow characteristics (particle velocity and trajectory, gyration degree and radius, particle size distributions) and the microscopic properties (collision, contact force, axial diffusion, and kinetic energy) of granular systems were systematically investigated. The results show that the segregation rate and degree of particles with Gaussian distributions gradually increase with the increase of the rotation speed and particle size parameter λ. The radial and axial segregation patterns become more obvious with the increase of λ. And the variation of the flow characteristics of particles with different sizes in the same system is also inconsistent. The microscopic properties of Gaussian-dispersed particles change with the rotation speed and λ. The rapid radial segregation depends on the larger pores existed in the granular system, which leads to a gradual increase of the axial dispersion coefficient of large particles and a gradual decrease of the axial dispersion coefficient of small particles.  相似文献   

3.
《Advanced Powder Technology》2021,32(12):4765-4778
Discrete element method (DEM) simulations of size-driven segregation of binary particles in a rotary drum were conducted to investigate the influence of filling level, size ratio, and rotation speed on the segregation performance. Segregation experiments with different filling levels were used to verify the DEM model and analyze the influence of filling levels on segregation. The granular bed was divided into five layers to study the axial segregation in the rotary drum. The total velocity fluctuation was used to discuss the granular behavior from a mesoscopic perspective. A segregation index was adopted to quantify the segregation performance with different parameters. It was found that binary particles in the drum with different filling levels have different segregation patterns. A core of small particles was formed in the middle of granular bed for the case with a higher filling level, while there is no core formed for the case with a lower filling level. Results obtained indicate that the size-driven segregation in the drum with lower filling level increases with the increase of size ratio. Within the rolling regime, the rotation speed has little influence on the final segregation index of particles.  相似文献   

4.
Granular tumbled frequently segregate by grain size along the axis of partially-filled, horizontal, rotating tubes. When segregation approaches saturation at the surface, a well-defined pattern of bands with wavelength λ emerges. The long-term dynamics of the pattern involves a much slower coarsening process. We characterized the initial saturated wavelength λ as a function of the diameter of the tube D for a filling fraction of 30 %, for 1.9 cm ≤D≤11.5 cm. We also studied the initial growth-rate of the bands as D varies. We find that λ/ D is not constant, but rather increases rapidly for small D. The growth-rate of bands decreases with smaller D and segregation is suppressed completely for sufficiently small D. These relatively simple features are not captured by any of the existing models of axial segregation.  相似文献   

5.
We study the interface dynamics of a binary particle mixture in a rotating cylinder numerically. By considering only the particle motion in axial direction, it is shown that the initial dynamics can be well described by a one-dimensional diffusion process. This allows us to calculate a macroscopic diffusion constant and we study its dependence on the inter-particle friction coefficient, the rotation speed of the cylinder and the density ratio of the two components. It is found that radial segregation reduces the drift velocity of the interface. We then perform a microscopic calculation of the diffusion coefficient and investigate its dependence on the position along the cylinder axis and the density ratio of the two particle components. The latter dependence can be explained by looking at the different hydrostatic pressures of the two particle components at the interface. We find that the microscopically calculated diffusion coefficient agrees well with the value from the macroscopic definition when it is measured in the middle of the cylinder.  相似文献   

6.
基于离散元方法,以旋转筒内RDX-Al二元颗粒体系的搅拌过程为研究对象进行模拟。采用离散元软件(EDEM),首先研究RDX-Al二元颗粒各自随转速的变化趋势,并进一步得出二元颗粒变化率的特点,做出分布上的拟合,得出最吻合模拟试验的函数为指数函数。然后,将旋转筒细分为多个单元空间,考察旋转轴与单元空间之间的距离对二元颗粒混合效果的影响。结果表明:单元空间离旋转轴越远,即旋转半径越大,颗粒之间的变化率也就越快,越容易达到均匀状态。最后,考察加入抄板的影响,结果表明:RDX-Al二元颗粒趋于的稳定值分别发生了改变。  相似文献   

7.
Solid–solid–gas three-phase particle segregation in a half-filled rotating drum is simulated using Eulerian continuum approach coupling the kinetic theory of granular flow. A dynamic angle of repose fitting (DARF) method is proposed to determine granular kinetic viscosities of particles of six different sizes moving in the drum rotating at 10 rpm, 20 rpm or 30 rpm. The DARF granular kinetic viscosity increases and decreases with the increasing of particle size and drum rotational speed, respectively. The determined DARF granular viscosity values are used to simulate size-induced particle segregation in a rotating drum. The simulated small-particle-rich segregation structure shows a central small-particle-rich band together with two small-particle-rich side wings. The size of the wings decreases with the increasing of the drum rotational speed. The formation of radial segregation core and axial segregation bands qualitatively agree with the experimental observations.  相似文献   

8.
We carry out an experimental study of the equilibrium segregation of ternary granular mixtures in a rotating cylinder. In all the experiments, 50% of the volume of the cylinder is filled with the granular mixture and the rotational speed used ensures operation in the rolling regime of flow. Mixtures of spherical particles differing only in size and of spherical particles differing in size and density are considered, using steel balls and glass beads of different sizes. Volume fractions of the components (f{\phi}) are measured by sampling at different radial positions (r) to yield the radial volume fraction profiles (f(r){\phi(r)}). Results for mixtures differing only in size of the components indicate that the segregation process is nearly independent of the sizes of the large and middle size particles for the same size of small particles. In the case of mixtures with different size and density components, the segregation patterns depend on the direction of the resultant driving force. In many of the mixtures considered, the pattern of segregation can be qualitatively predicted by considering binary interactions between the components. However, in some mixtures, ternary interactions are found to determine the pattern obtained.  相似文献   

9.
Using DEM particle simulations we consider segregation of a binary granular particle mixture in a slowly rotating cylindrical tumbler where the particles differ only in their shape—spherical versus more cubical particles. We find that the more cubical particles segregate to the inner core of the particle bed while the spherical particles segregate to the curved walls of the tumbler. The main mechanism for this segregation is different energy dissipation rates for the different particle shape types when avalanching down along the free surface. The cubical particles, due to their sharper corners, dissipate energy much faster than the spherical particles. This results in spherical particles reaching the bottom end of the sloped, free surface which are then transported around the cylinder adjacent to the cylinder wall, as rigid body motion. In contrast to size or density segregation, the segregation due to shape is much weaker and takes longer to reach its equilibrium or steady state. In addition, the segregation occurs along the top surface rather than through the top surface (as occurs for size and density segregation). In general, in situations where two particles differ in their ease of flow (viz flowability) the more rapidly flowing particle will segregate to the base of the free surface (which in the case of the tumbler results in spherical particles near the periphery) and the more slowly flowing particle will segregate underneath.  相似文献   

10.
The mixture of grains inside a rotating horizontal cylinder segregate into alternating bands of big and small grains along the rotation axis at appropriate conditions. However, the response of these bands to perturbations is largely unexplored. Here, we report that, when deformed by a weak localized perturbation from one end of the cylinder, the axial bands relax to their original positions after several rotations of the cylinder. Considering that relaxation in other physical systems is related to their structure and dynamics, this robust phenomenon could have interesting implications on our understanding of granular materials.  相似文献   

11.
The Discrete Element Method (DEM) is used to study the segregation of a binary mixture of differing density (but same size) granular material in an axially rotating cylinder. The rotation rates used produce a flow that is on the borderline between the avalanching and rolling regimes. The simulations replicate the experimental data well at both qualitative and quantitative levels. Both wall-induced and radial segregation are observed. The simulations show segregation is delineated into two main time regimes. At early times segregation is rapid (when the dense core is being established) and slows down appreciably thereafter. The final asymptotic state is found to be independent of the initial segregation state of the particles. We compare these results with previous theoretical models and relate these two distinct time regimes to the underlying segregation mechanisms. These comparisons suggest segregation varies as a function of two fundamental quantities (a) density ratio of particles and (b) angular speed of the rotating cylinder. It is shown that maximal segregation occurs for specific ranges of these quantities.  相似文献   

12.
Size-induced granular segregation was performed systematically and experimentally in an almost fully filled double-walled rotating drum at 10 different rotation speeds and two different side wall types. The motion of the granular materials was recorded using a high-speed camera for image analysis of particle segregation development in the drum. With continual tracking of the particle movements, the velocity, fluctuations, and granular temperatures were measured. The experimental results indicate that both rotation speeds and friction coefficient of side walls significantly affect segregation phenomena in binary-size mixture granular flows. The results demonstrate similar situations to the Brazil-nut effect and its reverse in the radial direction at either high or a low rotational speed (where the Froude number (Fr) is far from 1). At these instances, the maximum granular temperature occurs near the side walls. Specifically, a double segregation effect (DSE) is found at Froude number (Fr) close to 1. These results can be used in many industrial processes, for example, size grading of materials, screening of impurities, and different structures of functionally graded materials. Moreover, the maximum granular temperature occurs in the middle of the ring space. It causes small particles to move toward both side walls as it pushes bigger particles to accumulate in the middle of the ring space of rotating drum.  相似文献   

13.
Third  J.R.  Scott  D.M.  Lu  G.  Müller  C.R. 《Granular Matter》2015,17(1):33-41

The axial dispersion of approximately monosized particles in rolling mode in rotating cylinders with bulk flow is examined using a Monte Carlo model and discrete element method (DEM) simulations. The Monte Carlo model predicts that the mean square displacement relative to the mean axial displacement of the bed undergoes oscillations in time. The nature of these oscillations depends on the fill level of the cylinder and the extent of particle mixing during avalanches. When the cylinder is half full the Monte Carlo model predicts undamped oscillations, whereas a filling fraction of 0.26 produces oscillations whose amplitude decreases with time. If mixing during avalanches is assumed to be perfect then the oscillations occur about a linear increase with time. In contrast, if it is assumed that the particles do not mix during avalanching, the oscillations occur about an increase with time which has a gradient which increases with time. There is good qualitative agreement between the Monte Carlo model with perfect mixing and the DEM when the filling fraction is 0.26. For a filling fraction of 0.5 the DEM data show oscillations about a faster than linear increase with time.

  相似文献   

14.
Granular materials segregate spontaneously due to differences in particle size, shape, density and flow behaviour. In this paper we experimentally investigate density-difference-driven segregation for a range of density ratios and a range of heavy particle concentrations. The experiments are conducted in an annular shear cell with rotating bumpy bottom that yields an exponential shear profile. The cell is initially filled with a layer of light particles and an upper layer of heavier grains and, on top, a load provides confinement. The segregation process is filmed through the transparent side-wall with a camera, and the evolution of particle concentration in space and time is evaluated by means of post-processing image analysis. We also propose a continuum-approach to model density-driven segregation. We use a segregation-diffusion transport equation, constitutive relations for effective viscosity and friction coefficient, and a segregation velocity analogous to the Stokes’ law. The model, which is validated by comparison with experimental findings, can successfully predict density-driven segregation at different density ratios and volumetric fraction.  相似文献   

15.
Understanding the flow and mixing of rod-like particles is fundamental because of the widespread use of rods in the process industry. In this paper, discrete element method is used to investigate the flow and mixing of rod-like particles in a horizontal rotating drum, with rod-like particles being modeled by super-ellipsoids. The influence of the aspect ratio of the rod and the rotation speed of the drum on the flow of rod-like particles is studied. The investigation of spherical particles is also included in this paper to reveal the differences between rod-like and spherical particles. The simulation results show that the flow of rods is more intermittent than that of spheres and that there is more intermittent flow for rod-like particles with larger aspect ratios. Both the aspect ratio of the rod and the rotation speed of the drum considerably influence particle mixing. The mixing rate, as quantified by the slope of the variation in the mixing index with respect to drum revolution, increases as rotation speed and aspect ratio decrease. The study of particle orientation indicates that rod-like particles have a preferred orientation during rotation of the drum: the major axis of the rod inclines to be parallel to the end plate of the drum.  相似文献   

16.
The paper deals with the detection of the free surface in a rotating two-phase system. It consists of a cylindrical rotor with horizontal axis and a fixed plate as a scraping internal tool. The cylinder is partially filled with a viscous heavy liquid and is otherwise filled with air as thin passive phase. Depending on the filling degree and on a dimensionless parameter which indicates the relative influence of gravity and viscous forces within the liquid, different flow states can be observed. In order to visualize the phase interface, two different experimental techniques are applied, namely an optical method on the basis of laser light-sections and the X-ray computed tomography. In addition, the free surface is calculated by means of a numerical simulation of the two-phase flow. The results obtained with the different methods are compared each other and discussed.  相似文献   

17.
McLaren  C.  Third  J. R.  Müller  C. R. 《Granular Matter》2015,17(1):43-48

This work reports experimental measurements of the dispersion of particles during rotation in a horizontal cylinder. The axial dispersion of a pulse of approximately monodisperse black glass ballotini into a bed of clear glass ballotini of the same size is analysed. This is done using a sectioning technique, where the concentration is determined throughout the cylinder for a given rotation time and speed. The concentration profile is fitted to an appropriate solution of Fick’s second law to determine the dispersion coefficient. The dispersion coefficient is compared for various drum rotation rates and glass ballotini sizes. The cylinder was filled to 35 % by volume and rotated at a range of speeds between 5 and 20 rpm. The particle sizes vary from 1.14 to 3.15 mm. The dispersion coefficient was found to be dependent on both particle size and rotation speed. As the rotation speed, \(\omega \), was increased the dispersion coefficient increased proportionally to \(\omega ^{0.8}\). As the particle diameter, \(d_p\), was increased the dispersion coefficient increased proportionally to \(d_p^{1.84}\). These results are compared with previous experimental and simulation data, in particular the simulations of Third et al. (Powder Technol 203:510, 2010). Strong agreement was found between the simulations of Third et al. and the experimental results.

  相似文献   

18.
What is the effect of interstitial fluid viscosity on granular density segregation in a horizontal rotating cylinder? We conducted experiments in the rolling regime with equal amounts of equal sized high and low density, nearly spherical granular particles saturated with air, water, and water-glycerin mixtures. We held particle density, rotation rate and characteristic length scale constant to highlight differences due purely to the interstitial fluid. Images of the granular flow at an end wall were used to determine radial and axial density segregation rates and patterns. Over a four decade change in viscosity, segregation rates varied by only a factor of two. However, for ratios of lubrication to frictional stresses above one, segregation rates decreased by about 30%, and we observed several notable phenomena in the segregation pattern formation. These were a creeping mode of radial density segregation, a change in shape of the granular bed to kidney shaped from flat, and for cylinders more than half full the typically reported unsheared central portion of the granular bed (often referred to in the literature as a core region) was disrupted by a wavy instability where the rate of disappearance of the core region decreased as the fill level increased.  相似文献   

19.
Summary A source, which is situated on the axis of a rotating fluid, commences to expel fluid with constant rate at the time t=0. We describe how the geostrophic forces lead to the formation of a narrow column along the axis, before the eventual development of the viscous Stewartson column along the axis, and how the final steady state is achieved. An understanding of the role of the non-linear inertial forces in the neighbourhood of the source is given. The results are also extended by considering the effect of placing the source between two infinite discs situated perpendicular to the axis of rotation.  相似文献   

20.
We report that the formation of much reported axial segregation bands in rotating cylinders loaded with different sized particles depends critically on scale and inertia. Specifically, when the ratio, , of the diameter of the cylinder to the average diameter of the particles is large, axial bands invariably appear, when is small, bands never appear, and between these extremes lies a reversible state where the presence or absence of bands depends on container rotation speed. Our results indicate that banding is associated with a Rayleigh-like instability of a granular core of fine particles, and that this instability is controlled by the inertia of the larger species – and consequently on scale.KeywordsGranular, Segregation, Mixing, Banding, ScalePACS number(s): 05.40.+j, 46.10.+z, 83.10.Hh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号