首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defect-impurity complexes with high thermal stability which were generated after high temperature annealing of silicon n+-p diodes irradiated with 4 MeV electrons at 300 K have been studied by means of deep level transient spectroscopy (DLTS). Such defects are of interest because of their possible application in controlling the carrier lifetime in silicon power devices. The parameters of four deep level traps have been determined and compared with the results of photoluminescence studies on thermal stability of electron-irradiation-induced defects. A donor like trap with an energy level at Ev + 0.39 eV was assigned to a complex incorporating an interstitial carbon atom and two oxygen atoms (CiO2i), which gives rise to the P-line (hν = 0.767 eV) in photoluminescence spectra.  相似文献   

2.
In this paper, Fourier-transform infrared (FTIR) spectroscopy and ellipsometric spectroscopy were used to characterize the optical properties of atomic layer-deposited (ALD) ultra-thin TaN films on a Si(1 0 0) single crystal. The analysis of FTIR spectra indicates that the incorporated impurities are in the form of radicals of NHx, CHx and OHx. SiHx is also detected due to interfacial reactions between NHx and the Si substrate native oxide. These H-containing radicals can be removed by post-annealing the samples. The vibration of Ta–N bonding is at the wavenumber of 1190 cm−1, which is independent of the film thickness and post-annealing temperature. The results of ellipsometric spectra show that the band gaps are 3.28 eV, 2.65 eV and 2.50 eV as the films thicknesses are 1 nm, 5 nm and 10 nm, respectively. A slight red-shift of the band gap takes place after annealing the ultra-thin films. The mechanisms of the film optical properties were analyzed in the paper.  相似文献   

3.
《Optical Materials》2014,36(12):2624-2628
β-Ga2O3 films were grown on double-side polished MgAl6O10 (1 0 0) substrate by metal organic chemical vapor deposition (MOCVD) at 600, 650 and 700 °C. The refractive index dispersive behaviors of Ga2O3 films have the typical shape of the normal dispersion curve. Photoluminescence (PL) spectra measured at room temperature revealed that all the films exhibited intense ultraviolet (UV)–green emission from 300 to 650 nm. A minor deep UV emission around 275 nm (∼4.51 eV) was observed for the sample prepared at 700 °C. The intensity of the emission increased markedly when measured at low temperature. The corresponding PL mechanisms were discussed in detail and a schematic diagram was proposed.  相似文献   

4.
Synthesis and luminescence properties of LiInO2 nanocrystals by the sol–gel process were investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy and absorption spectra. The well-crystallized tetragonal LiInO2 can be obtained by heat treatment above 600 °C from XRD. The excitation wavelengths at about 246 nm were associated with charge transfer between In and O with In3+ ions in octahedral coordination. The PL spectra excited at 246 nm have a broad and strong emission band maximum at 391 nm, corresponding to the self-activated luminescence. The optical absorption spectra of the 600 °C sample exhibited the band gap energies of 3.7 eV.  相似文献   

5.
Emission and excitation spectra as well as luminescence decay kinetics of complex non-stoichiometric fluoride crystals Na0.4(Y1−xNdx)0.6F2.2 (x = 0.005, 0.05, 0.2, 1) and Na0.4(Y1−xTmx)0.6F2.2 (x = 0.0005, 0.01, 0.05, 0.1) have been studied in the VUV spectral range at liquid-helium (T  10 K) temperatures. It has been shown that these crystals show intense broad-band VUV luminescence due to the interconfiguration 5d-4f transitions in Nd3+ and Tm3+ ions. Remarkable concentration quenching is observed for Nd3+ 5d-4f luminescence whereas fast (spin-allowed) 5d-4f luminescence of Tm3+ shows no concentration quenching for the studied doping level up to 10%. The spin-allowed 5d-4f luminescence of Tm3+ in these crystals was found to be rather weak compared to spin-forbidden 5d-4f luminescence because of efficient nonradiative relaxation from higher-energy 5d states of Tm3+ to the lowest-energy 5d level responsible for spin-forbidden 5d-4f luminescence. The studied fluoride systems can be considered as promising active media for the development of VUV solid state lasers with optical pumping.  相似文献   

6.
Low-temperature reflection spectra of lithium hydride (LiH) single crystals cleaved in ultrahigh vacuum (3 × 10−10 Torr, T = 10 K), were recorded using synchrotron radiation in vacuum ultraviolet spectral region. Based on the obtained experimental data, the optical functions of LiH in the energy range from 3.7 to 35 eV were analyzed using the Kramers–Krönig relations. Time-resolved photoluminescence excitation spectra were studied in detail for the near edge free exciton-phonon luminescence at 4.67 eV and photoluminescence at 2.4 eV due to the Bi3+ impurity centers. The effect of multiplication of electronic excitations due to inelastic scattering of hot photoelectrons and hot photoholes was revealed at photon energies above 15 eV (more than 3Eg). It was found that the radiative lifetime for free excitons in LiH at 4.67 eV is less than 1 ns as low temperatures as at 10 K. The interpretation of the electronic band structure of lithium hydride in the ultraviolet and vacuum ultraviolet spectral regions were carried out on the basis of the present experimental results with the involvement of the available band structure calculations.  相似文献   

7.
Non-polar ZnO thin films were deposited on m-plane sapphire substrates by pulsed laser deposition at various temperatures from 300 to 700 °C. The effects of growth temperature on surface morphology, structural, electrical, and optical properties of the films were investigated. All the films exhibited unique m-plane orientation indicated by X-ray diffraction and transmission electron microscopy. Based on the scanning electron microscopy and atomic force microscopy, the obtained films had smooth and highly anisotropic surface, and the root mean square roughness was less than 10 nm above 500 °C. The maximum electron mobility was ~18 cm2/V s, with resistivity of ~0.26 Ω cm for the film grown at 700 °C. Room temperature photoluminescence of the m-plane films was also investigated.  相似文献   

8.
《Optical Materials》2005,27(10):1563-1566
Optical properties of fluorophosphate Er3+–Yb3+ fiber preforms with different concentrations of ErF3 and YbF3 are investigated in the temperature interval 25–300 °C. The temperature-dependent absorption spectra and luminescence at 1535 nm (under the λ = 970 nm excitation) spectra as well as the 4I13/2  4I15/2 luminescence decay times are used to compute the luminescence cross-section σe(λ). Our results show that in the range of the temperature investigated the quenching effect due to the temperature increase weakly affects the luminescence cross-section and decay time, which make these materials promising for fiber-optics applications.  相似文献   

9.
《Optical Materials》2010,32(12):1822-1824
A series of lanthanide dinitrosalicylates M3Ln(3,5-NO2-Sal)3 · nH2O (Ln = Eu, Gd; M = Li, Na, K, Cs) was synthesized. It was found that the luminescence efficiency of some M3Eu(3,5-NO2-Sal)3 · nH2O compounds was near to the high efficiency of europium dibenzoylmethanate with 1,10-phenanthroline, Eu(DBM)3 · Phen. The luminescence excitation spectra, electron-vibrational luminescence spectra, and vibrational IR spectra were investigated. The energy of the lowest excited triplet state of the ligand was obtained from phosphorescence spectra of M3Gd(3,5-NO2-Sal)3 · nH2O, M(3,5-NO2-HSal) · nH2O, and M2(3,5-NO2-Sal) · nH2O. The details of the structure of compounds were discussed. The influence of different M-cations on the Eu3+ luminescence efficiency and on the processes of excitation energy transfer to a Eu3+ ion was analyzed. The presence of large alkali metal cations in lanthanide dinitrosalicylates and an increase in the temperature weaken the network of hydrogen bonds and, to some extent, the “ligand–metal” bonds. This is a cause of a long-wavelength shift of the intraligand charge transfer (ILCT) band in Eu3+ excitation spectra arising at inclusion of Cs+ instead of Li+ cations in the crystal lattice and at the heating of compounds. A change of the energies of ligand electronic states at substitution of Li+ and Na+ for Cs+ can give a tenfold enhancement of the Eu3+ luminescence efficiency at 300 K.  相似文献   

10.
A single crystalline Eu-doped GaN was grown by gas-source molecular beam epitaxy and photoluminescence (PL) properties were studied. The PL spectra show red-emission at 622 nm originating from intra 4f–4f transition of Eu3+ ion without band-edge emission of GaN. The peak shift of the red-emission with the temperature variation from 77 K to room temperature is less than 1.6 meV, and thermal quenching of the luminescence was found to be small compared with the band-to-band transition. Fourier transform infrared spectra showed an absorption peak at about 0.37 eV, which may be due to a deep defect level. The intensity of the red luminescence and the defect-related absorption peak increased with increasing Eu concentration, and a close correlation in the intensity was observed between them. These results suggest that the deep defect level plays an important role in the radiative transition of Eu3+ ion in GaN and the optical process for the luminescence at 622 nm was discussed with the relation to the defect.  相似文献   

11.
《Optical Materials》2014,36(12):2053-2055
The comparative study of the luminescent properties of Al2O3:Ti crystal in comparison with those for undoped Al2O3 crystal counterpart is performed under synchrotron radiation excitation with an energy of 3.7–25 eV. Apart from the main emission band peaked at 725 nm related to the 2E  2T2 radiative transitions of Ti3+ ions, the luminescence of excitons localized around Ti ions in the band peaked at 290 nm and the luminescence of F+–Ti and F–Ti centers in the bands peaked at 325 and 434 nm are also found in the emission spectra of Al2O3:Ti crystal. We show also that the luminescence of Ti3+ ions in Al2O3:Ti crystal can be effectively excited by the luminescence of excitons localized around Ti dopant as well as by the luminescence of F–Ti centers.  相似文献   

12.
Studies of line intensity in the optical and magneto-optical spectra in the holmium-containing paramagnetic garnet Ho3+:YAG were carried out within the visible spectrum at T = 85 K. Detailed investigation of the magnetic circularly polarized luminescence spectra at 85 and 300 K on 5S2  5I8 emission transition in Ho3+:YAG was carried out. A quasi-doublet state in the energy spectrum of the Ho3+ ions was observed, characterized by a significant magneto-optical activity, which is caused by a large Zeeman splitting of the quasi-doublet. The measurement of the magnetic circular polarized luminescence spectrum carried out within one of the emission lines of the luminescence band 5S2  5I8 in Ho3+:YAG at 85 K shows significant magneto-optical effects of the intensity change of the emitted light, compared to that measured for the other emission lines in the same luminescent band.  相似文献   

13.
We report the structural evolution and optical properties of lanthanum doped lead zirconate titanate (PLZT) thin films prepared on Pt/TiO2/SiO2/Si substrates by chemical solution deposition. X-ray diffraction demonstrates the post-deposition annealing induced crystallization for PLZT films annealed in a temperature (Ta) range of 550–750 °C. PLZT films annealed at higher temperature exhibit polycrystalline structure along with larger grain size. Optical band gap (Eg) values determined from UV–visible spectroscopy and spectroscopic ellipsometry (SE) for PLZT films were found to be in the range of 3.5–3.8 eV. Eg decreases with increasing Ta. The optical constants and their dispersion profiles for PLZT films were also determined from SE analyses. PLZT films show an index of refraction in the range of 2.46–2.50 (λ = 632.8 nm) with increase in Ta. The increase in refractive index at higher Ta is attributed to the improved packing density and crystallinity with the temperature.  相似文献   

14.
《Optical Materials》2014,36(12):2146-2154
(GdxLu3−x)Ga3Al2O12:0.3 at.%Pr (x = 0.025, 0.05, 0.1, 0.2, 0.4, 0.6) (GLGAG:Pr) polycrystalline powders are prepared by solid-state reaction method. To better understand the luminescence mechanism, the optical diffuse reflectance, photoluminescence emission and excitation, X-ray excited luminescence spectra and decay kinetics of GLGAG:Pr were investigated in detailed, allowing the determination of energy transfer from 5d state of Pr3+ to 4f state of Gd3+, and the non-radiative relaxation from 5d to 4f state of Pr3+. Besides, the former process plays more negative role in the emission quenching of GLGAG:Pr than later one. Pr3+ ion is regarded as an ineffective activation ion in Gd-based multicomponent aluminate garnets. In addition, the wavelength-resolved thermoluminescence spectra of GLGAG:Pr were studied after UV and X-ray irradiation. It is revealed that the localized recombination processes from electron traps to lower lying 4f levels of Pr3+ occurs without populating the higher 5d levels of Pr3+.  相似文献   

15.
《Materials Letters》2007,61(23-24):4516-4518
The present work deals with thickness dependent study of the thin films of Ge10Se90  xTex (x = 0, 10) chalcogenide glasses. Bulk samples of Ge10Se90 and Ge10Se80Te10 have been prepared by melt quenching technique. Thin films (thickness d = 800 nm and 1100 nm) of the prepared samples have been deposited on glass substrate using vacuum evaporation technique. The optical parameters i.e. optical band gap (Egopt), absorption coefficient (α), refractive index (n) and extinction coefficient (k) are calculated from the transmission spectrum in the range 400–1500 nm. The optical band gap decreases with the increase of thickness from 1.87 ± 0.01 eV (d = 800 nm) to 1.80 ± 0.01 eV (d = 1100 nm) for Ge10Se90 and from 1.62 ± 0.01 eV (d = 800 nm) to 1.48 ± 0.01 eV (d = 1100 nm) for Ge10Se80Te10 thin films.  相似文献   

16.
《Optical Materials》2005,27(3):491-498
Thermally evaporated zinc phthalocyanine (ZnPc) films in the as deposited condition were identified to be as-amorphous. It undergoes structural transformation upon annealing up to 613 K. The optical properties and spectral behavior of as deposited and annealed thin films of ZnPc were studied using spectrophotometric measurements of the transmissivity and reflectivity at normal incidence of light in the wavelength range 200–2500 nm. The refractive index, n, and absorption index, k, were calculated and it was found that they are independent of film thickness in the thickness range 205–530 nm. Annealing at 613 K increases absorbance of films by 5–6 times in comparison with absorbance of as deposited ones and shifts peak positions of all bands towards low energy side of spectra except the peak position of N-band is shifted towards high energy side of spectra. The absorption spectra in the UV–VIS. region has been analyzed in terms of both molecular orbital and band theories. Indirect allowed transitions near the onset and fundamental absorption edges were observed. The energy at the onset was obtained and equals to 1.45 and 1.51 eV for as deposited and annealed films, respectively. The fundamental energy gap was obtained and equals to 2.94 and 2.88 eV for as deposited and annealed films, respectively. The absorption spectra shows four absorption bands. The oscillator strength, f, the electric dipole strength, q2, the molar extinction coefficient, ζmolar, were calculated for as deposited and annealed ZnPc thin films.  相似文献   

17.
Calcium-doped BN thin films CaxBNy (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al2O3(0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca3N2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.  相似文献   

18.
The phosphors of Na2Ca2-2xEu2xSi3O9 (x = 0, 0.03, 0.05, 0.07, 0.09) were first synthesized by sol-gel method. The crystal phase formations of the phosphors were detected by X-ray powder diffraction (XRD) measurements and the structure refinement. The photoluminescence spectra, the concentration quenching, the luminescence decay curves and the luminescence color chromaticity were measured, respectively. The excitation spectra indicate that the phosphors can be effectively excited by near UV-LED chips. Two kinds of Eu2+ sites centered at 545 nm and 505 nm were discussed by analyzing the spectra, concentration-dependent luminescence intensity and lifetimes. This is a potential tool for monitoring the bioactivity of 45S5 glass-ceramics in situ.  相似文献   

19.
There have been studied single crystals of undoped and doped Bi12TiO20 with two concentrations of W5+ (2.62 × 1017 cm−3 and 2.62 × 1018 cm−3). There have been obtained absorption spectra in the energy range of 10,482–15,408 cm−1 by classical measurements. There have been determined the cross-section (σa) of the impurity absorption and the oscillator strength of dd transitions. There have been calculated the refractive index of doped crystals and the concentration of Ti3+ ions in an undoped sample through an experiment.  相似文献   

20.
Electrical and luminescent properties of N-polar undoped GaN films grown using low temperature GaN buffers on on-axis and miscut sapphire and on-axis AlN buffers are compared to the properties of Ga-polar films grown on low temperature GaN buffers. It is shown that the concentration of residual donors increases by about an order of magnitude for on-axis N-polar growth and by two orders of magnitude for off-axis growth compared to Ga-polar films. On-axis films for both Ga-polar and N-polar polarities show the presence of n+ interfacial layers greatly influencing the apparent electron concentration and mobility deduced from capacitance–voltage CV measurements. These interfacial layers are much less prominent in the miscut N-polar films. Growth on N-polar greatly increases the concentration of electron traps with activation energy of 0.9 eV possibly related to Ga-interstitials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号