首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In isolated K+ (16.2 mM)-arrested cat hearts perfused at constant pressure adenosine infusions (0.8 mumoles - min-1 - 100 g-1 for 10 min) caused an increase in myocardial 14C-glucose uptake and release of 14CO2 + H14CO3- AND 14C-lactate simultaneously with a rise in coronary flow. The ratio of the release of 14CO2 + H14CO3- to that of 14C-lactate and the specific activity of lactate in the effuate were not altered. In K+ -arrested hearts perfused with constant volume neither glucose uptake nor glucose breakdown were influenced by 0.8 or 100 mumoles - min-1 - 100 g-1 adenosine with 0.1 - 5 mM glucose in the perfusion medium. It is concluded that adenosine does not affect directly the myocardial glucose carrier system, aerobic or anaerobic glucose breakdown or glycogenolysis, but enhances glucose uptake secondarily by increasing coronary flow. This interpretation is substantiated by the finding that mechanically produced increases in perfusion volume caused similar increases in myocardial glucose uptake as were observed with comparable adenosine-induced coronary flow increments.  相似文献   

2.
At 9 mM glucose, experimental results show that mitochondrial phosphate depletion (induced by glucose phosphorylation, catalyzed by mitochondrial hexokinase) reduces the activities of the respiratory chain, oxidative phosphorylation, and glutaminase. Consequently, the 14C-lactate oxidation to 14CO2 is lowered in the presence of glucose. The fall of ATP level triggers a high aerobic glycolysis by deinhibiting fructose-6-P kinase. NADH, generated by enhanced glyceraldehyde-3-P dehydrogenase activity, increases the reducing power. Moreover, the lactate dehydrogenase (LDH) system is shifted toward lactate formation, while NAD+ is regenerated and the oligomycin-inhibited ATP production is replaced by the iodoacetate-inhibited ATP production. From 14CO2 production and lactate accumulation it is calculated that about 60% of 14C-glucose which disappears is channelled into extraglycolytic reactions. On the contrary, 82% of glucose below l mM is metabolized through non-glycolytic reactions. The pyruvate kinase-M2 (PK-M2) inhibition does not limit the glycolytic flow from 9 mM glucose, but it may cause sustained gluconeogenesis.  相似文献   

3.
To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing D-[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (microg dry wt)(-1) from the exogenous glucose and 14.2 pmol (microg dry wt)(-1) from endogenous substrates. Lactate release was not increased when bath PO2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 mM and 1 mM glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.  相似文献   

4.
Fatty acid oxidation is generally considered the major source of energy in the heart, although lactate oxidation can be a major contributor to ATP production, depending on the concentration and availability of other competing substrates. In this study, isolated working rat hearts were used to directly determine the relationship between lactate and fatty acid oxidation to overall ATP production from exogenous sources. A range of lactate from 0.5 to 8.0 mM lactate was added to hearts perfused with buffer containing 5.5 mM glucose, and either 0.4 or 1.2 mM palmitate over a 100 min period. Rates of glycolysis, glucose oxidation, lactate oxidation, and palmitate oxidation were determined. In the presence of 0.5 mM lactate and 0.4 mM palmitate, lactate oxidation provided 17% of the ATP production and palmitate oxidation provided 68%, with the remainder coming from glucose oxidation and glycolysis. In the presence of 0.4 mM palmitate, an increase in lactate from 0.5 to 8.0 mM increased the steady state rates of lactate oxidation from 1239+/-236 to 5247+/-940 nmol/min/g dry weight, respectively. The contribution of lactate oxidation to total ATP production increased to 37%, with palmitate oxidation now contributing only 52% of the total ATP produced. At 8.0 mM lactate and 1.2 mM palmitate, lactate oxidation contributed 13% of the total ATP production, while palmitate oxidation contributed 81%. This data demonstrates that under near physiological conditions of lactate (0.5 mM) and fatty acids (0.4 mM), the preferred energy substrate of the heart remains to be fatty acids, and that only at high levels of lactate, such as can be observed during exercise or severe stress, does lactate oxidation become a significant source of ATP production.  相似文献   

5.
The role of the cellular redox state in the control of gluconeogenesis was studied in hemoglobin-free perfused chicken liver, by fluorimetric measurement of the redox states of intracellular pyridine nucleotides. The aminotransferase inhibitor, aminooxyacetate, completely inhibited gluconeogenesis from lactate in the perfused rat liver and to a small extent in the perfused chicken liver. In chicken liver, the highest rate of glucose production was seen with lactate, followed by fructose, pyruvate, and glycerol. When compared at 5 mM, the rate of glucose production from pyruvate was only 10% of that from lactate. Glucose production from a pyruvate/lactate mixture decreased with increasing proportions of pyruvate, together with redox changes of pyridine nucleotides to a more oxidized state. Increased reduction of pyridine nucleotides upon infusion of ethanol was associated with an increased glucose production from pyruvate, and the increase was abolished during octanoate infusion. This abolishment was accompanied by an increase in the acetoacetate to beta-hydroxybutyrate ratio with an oxidation of pyridine nucleotides. The octanoate-inhibited gluconeogenesis occurred at the higher lactate concentration (10 mM) with a transient oxidation of pyridine nucleotides. No significant inhibition was observed at 1 mM lactate, although an instant reduction of pyridine nucleotides was taking place. The rate of beta-hydroxybutyrate generation during octanoate infusion was 2.2 times higher at 1 mM than at 10 mM lactate. The inhibitory effect of octanoate on glyconeogenesis was completely relieved by the addition of NH4Cl. The results demonstrate that the regeneration of NADH in the cytosol is limited in chicken liver, and that gluconeogenesis is regulated, in part, by alteration in the redox states of mitochondria and cytosol.  相似文献   

6.
Arteriovenous differences (AVD) for glucose and lactic acid measured across tissue-isolated rat tumors in vivo have shown that individual tumors with similar rates of glucose consumption may either release or utilize lactic acid. The experiments described here investigated the relationships among arterial blood lactate concentrations and tumor lactate and glucose balances. AVDs for lactate, pyruvate, glucose, 14CO2, PO2, PCO2, pH, and lactate specific activities were measured across 17 tissue-isolated 7288CTC hepatomas perfused in situ with arterial blood containing 2.5 to 14.4 mmol/L lactate and either L-[(U)-14C]lactic acid or D-[(U)-14C]glucose. Measurements were made over a range of blood flow rates from 60% to 200% of the mean in vivo rate, 0.11 mL/min. Data collected during steady states were compared by regression analysis. Tumor lactate balance and the arterial blood lactate concentration were directly related (r = .895, n = 22, P < .01). Net negative and positive balances occurred below and above approximately 6.5 mmol/L arterial blood lactate, respectively. The mean intratumor lactate concentration for all tumors was 6.9 +/- 1.0 mmol/L (mean +/- SD, n = 13). Rates of 14C-lactate oxidation to 14CO2 (r = .716, n = 18, P < .01) and tumor venous/arterial blood 14C-lactate specific activity ratios (r = .845, n = 19, P < .01) were low during lactate release and were increased during lactate uptake. Total arterial blood lactate removal estimated from chemical and isotopic analyses was 23.1% +/- 11% and 43.0% +/- 16% (P < .05), respectively, for six lactate-utilizing tumors. Perfusions performed with 14C-glucose showed that approximately 50% of the glucose consumed during net negative lactate balance was released as 14C-lactate to the tumor venous blood, whereas only 5% was released as 14C-lactate during net positive lactate balance. The data support the following conclusions: Arterial blood lactate controls net lactate balance in solid tumors; high concentrations increase uptake. Lactate uptake inhibits lactate formation from glucose without changing the glucose balance. Lactate is release during net lactate uptake. Since lactate uptake may exceed glucose uptake, arterial blood lactate can be a substrate for tumor energy metabolism and growth.  相似文献   

7.
Pancreatic islets were cultured for 24 h in the presence of 1 mM glucose, which renders islets incapable of responding to glucose with insulin release. These islets were compared to islets maintained at 20 mM glucose for 24 h. Detritiation of [2-3H]glucose and [5-3H]glucose in 1 mM glucose islets was normal, suggesting that glucose transport and phosphorylation and all enzymes of glycolysis were not down-regulated in the incapacitated islets. 14CO2 formation from [U-14C]glucose and [6-14C]glucose was inhibited up to 80% and 14CO2 from methyl succinate was inhibited up to 60%, indicating that down-regulation at (a) mitochondrial site(s) might explain the incapacitated insulin release. 14CO2 formation from [3,4-14C]glucose (which becomes [1-14C]pyruvate) was decreased, indicating that the reaction catalyzed by pyruvate dehydrogenase was down-regulated. This decrease, however, was not as large as the decreases in 14CO2 formation from [U-14C]glucose, [2-14C]glucose (which becomes [2-14C]pyruvate), or [6-14C]glucose (which becomes [3-14C]pyruvate), indicating that other reactions were also down-regulated. 14CO2 formation from [1-14C]glucose was inhibited less than that from [6-14C]glucose in the incapacitated islets (34 vs 54%) and these rates indicated that flux of glucose through the pentose phosphate pathway was increased in the incapacitated islet, such that 29% (0.4 nmol of 1.4 glucose/100 islets/90 min) was metabolized via this pathway in the incapacitated islet but only 3.4% (0.1 of 2.9 nmol glucose/100 islets/90 min) was metabolized via the pentose pathway in the 20 mM glucose islets. With rates of 14CO2 evolved from glucose labeled at C2 and C6 and from methyl succinate labeled at C1 + C4 and C2 + C3 the 14CO2 ratio formula was used to calculate the ratios of carboxylated and decarboxylated pyruvate. Roughly equal amounts of pyruvate entered the citric acid cycle by each route in islets maintained for 24 h at 1, 5, or 20 mM glucose. The results indicate that decarboxylation and carboxylation of pyruvate were about equally suppressed in incapacitated islets and that direct inhibition of reactions of the cycle was unlikely. This is consistent with evidence which indicates that down-regulation of both pyruvate carboxylase and pyruvate dehydrogenase occurs in incapacitated islets, i.e., under long-term conditions that modify amounts of enzymes (MacDonald et al., 1991, J. Biol. Chem. 266, 22392-22397).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In normoxic conditions, myocardial glucose utilization is inhibited when alternative oxidizable substrates are available. In this work we show that this inhibition is relieved in the presence of cAMP, and we studied the mechanism of this effect. Working rat hearts were perfused with 5.5 mM glucose alone (controls) or together with 5 mM lactate, 5 mM beta-hydroxybutyrate, or 1 mM palmitate. The effects of 0.1 mM chlorophenylthio-cAMP (CPT-cAMP), a cAMP analogue, were studied in each group. Glucose uptake, flux through 6-phosphofructo-1-kinase, and pyruvate dehydrogenase activity were inhibited in hearts perfused with alternative substrates, and addition of CPT-cAMP completely relieved the inhibition. The mechanism by which CPT-cAMP induced a preferential utilization of glucose was related to an increased glucose uptake and glycolysis, and to an activation of phosphorylase, pyruvate dehydrogenase, and 6-phosphofructo-2-kinase, the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, the well-known stimulator of 6-phosphofructo-1-kinase. In vitro phosphorylation of 6-phosphofructo-2-kinase by cAMP-dependent protein kinase increased the Vmax of the enzyme and decreased its sensitivity to the inhibitor citrate. Therefore, in hearts perfused with various oxidizable substrates, cAMP induces a preferential utilization of glucose by a concerted stimulation of glucose transport, glycolysis, glycogen breakdown, and glucose oxidation.  相似文献   

9.
Myocardial glucose use is regulated by competing substrates and hormonal influences. However, the interactions of these effectors on the metabolism of exogenous glucose and glucose derived from endogenous glycogen are not completely understood. In order to determine changes in exogenous glucose uptake, glucose oxidation, and glycogen enrichment, hearts were perfused with glucose (5 mM) either alone, or glucose plus insulin (40 microU/ml), glucose plus acetoacetate (5 mM), or glucose plus insulin and acetoacetate, using a three tracer (3H, 14C, and 13C) technique. Insulin-stimulated glucose uptake and lactate production in the absence of acetoacetate, while acetoacetate inhibited the uptake of glucose and the oxidation of both exogenous glucose and endogenous carbohydrate. Depending on the metabolic conditions, the contribution of glycogen to carbohydrate metabolism varied from 20-60%. The addition of acetoacetate or insulin increased the incorporation of exogenous glucose into glycogen twofold, and the combination of the two had additive effects on the incorporation of glucose into glycogen. In contrast, the glycogen content was similar for the three groups. The increased incorporation of glucose in glycogen without a significant change in the glycogen content in hearts perfused with glucose, acetoacetate, and insulin suggests increased glycogen turnover. We conclude that insulin and acetoacetate regulate the incorporation of glucose into glycogen as well as the relative contributions of exogenous glucose and endogenous carbohydrate to myocardial energy metabolism by different mechanisms.  相似文献   

10.
P-Nitroanisole O-demethylation by perfused rat liver based on the spectral properties of the product, p-nitrophenolate, was determined continuously. Rates of p-nitrophenol production in this system were sensitive to inhibition by CO. p-Nitrophenolate production by livers of normal animals was linear for up to 30 minutes; however, rates were only linear for 1 to 2 minutes followed by a steady decline in induced (6-fold) livers from phenobarbital-treated rats. Only a small portion (24%) of this steady decline could be accounted for by the formation of conjugation products. Additionally, infusion of p-nitrophenol (14 micronM) was not associated with a decline in rate. The decline in rate in induced livers was reversed by glucose, suggesting that an intimate relationship may exist between drug and carbohydrate metabolism in the intact liver. Alteration in rates of p-nitroanisole metabolism with various inducing agents of the mixed-function oxidation system (phenobarbital; ethanol) produced parallel changes in rates of hepatic lactate production, most likely reflecting the aciton of p-nitrophenol to uncouple oxidative phosphorylation. The data support the hypothesis that the decline in rate in p-nitroanisole O-demethylation in livers from phenobarbital-treated rats is due to reduced availability of NADPH for mixed-function oxidation.  相似文献   

11.
Insulin resistance of diaphragms of ob/ob mice has been repeatedly demonstrated previously both in vitro and in vivo. In the present study, transport and metabolism of glucose with and without insulin stimulation were compared in a skeletal muscle more likely than diaphragm or heart to be representative of the overall striated muscle mass, i.e. isolated soleus muscle. Compared with soleus muscle from lean controls, unstimulated lactate release in the presence of exogenous glucose was depressed from 16.2 to 12.3 nmol/60 min per mg wet wt in soleus from ob/ob mutants; glycolysis was decreased from 6.6 to 3.7 and [14C]glucose oxidation to 14CO2 from 0.90 to 0.33 nmol glucose/60 min per mg wet wt. Uptake of 2-deoxyglucose (2-DOG), both with and without insulin, was very much less for soleus from ob/ob than from lean mice, at 2-DOG concentrations ranging from 0.1 to 10 mM, and in mice of 6-15 wk. When 2-DOG concentration was 1 mM, its basal uptake was 0.53 nmol/30 min per mg wet wt for soleus of ob/ob as against 0.96 for soleus of lean mice. The absolute increment due to 1 mU/ml insulin was 0.49 in muscle of ob/ob as against 1.21 in that of lean mice. When the resistance to insulin action was decreased by pretreatment in vivo by either streptozotocin injection or fasting, the decreased basal 2-DOG uptake of subsequently isolated soleus muscle was not improved. Inhibition of endogenous oxidation of fatty acids by 2-bromostearate, while greatly increasing 14CO2 production from [14C]glucose, did not affect basal [5-3H]glucose metabolism or 2-DOG uptake. It is suggested that transport and/or phosphorylation of glucose under basal, unstimulated conditions are depressed in soleus muscle of ob/ob mice, whether or not resistance to insulin and hyperinsulinemia are also present. Although the origin of the decreased basal glucose uptake remains unknown it might be related to a similar decrease in basal glucose uptake by ventromedial hypothalamic cells, an event presumably resulting in a tendency to hyperphagia. Decreased basal glucose uptake by soleus muscle of ob/ob mice might explain the hyperglycemia, and hence partly the hyperinsulinemia and excessive fat deposition of those animals.  相似文献   

12.
We sought to explore the emerging concept that malonyl-CoA generation, with concomitant suppression of mitochondrial carnitine palmitoyltransferase I (CPT I), represents an important component of glucose-stimulated insulin secretion (GSIS) by the pancreatic beta-cell (Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE: Malonyl-CoA and long-chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267:5802-5810, 1992). Accordingly, pancreases from fed rats were perfused with basal (3 mM) followed by high (20 mM) glucose in the absence or presence of 2 mM hydroxycitrate (HC), an inhibitor of ATP-citrate (CIT) lyase (the penultimate step in the glucose-->malonyl-CoA conversion). HC profoundly inhibited GSIS, whereas CIT had no effect. Inclusion of 0.5 mM palmitate in the perfusate significantly enhanced GSIS and completely offset the negative effect of HC. In isolated islets, HC stimulated [1-14C]palmitate oxidation in the presence of basal glucose and markedly obtunded the inhibitory effect of high glucose. Directional changes in 14C incorporation into phospholipids were opposite to those of 14CO2 production. At a concentration of 0.2 mM, 2-bromostearate, 2-bromopalmitate and etomoxir (all CPT I inhibitors) potentiated GSIS by the pancreas and inhibited palmitate oxidation in islets. However, at 0.05 mM, etomoxir did not influence insulin secretion but still caused significant suppression of fatty acid oxidation. The results provide more direct evidence for a pivotal role of malonyl-CoA suppression of CPT I, with attendant elevation of the cytosolic long-chain acyl-CoA concentration, in GSIS from the normal pancreatic beta-cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The turnover rates of plasma lactate, normalized for O2 consumption rate, are higher in the fetus than in the adult. This occurs despite very low rates of fetal gluconeogenesis which preclude the recycling of lactate carbon into glucose. In an effort to establish the main routes of disposal of fetal plasma lactate, 12 midgestation ovine fetuses (age 74 +/- 1 days) were infused intravenously at constant rate with L-[U-14C]lactate for a 4-hour period. At the end of the infusion, the amounts of 14C retained by the fetus and by the placenta, and the distribution of the retained 14C in free and protein-bound amino acids and in lipids were measured. Of the total 14C infused, 17.0 +/- 1.4% was recovered in the placenta, 4.0 +/- 0.3% in the fetal liver, and 15.0 +/- 0.8% in the extrahepatic fetal tissues. Of the retained radioactive carbon, 45-57% was recovered in the free and protein-bound amino acid fractions and 11-17% in the lipid fractions. Approximately 90% of the 14C in the free amino acid fractions was present as glutamate/glutamine, serine, glycine, and alanine carbon. In conjunction with data on fetal CO2 production from lactate carbon, these results demonstrate that the main routes of fetal lactate disposal are oxidation and synthesis of nonessential amino acids and lipids.  相似文献   

14.
13C and 1H NMR spectroscopy was used to investigate the metabolism of L-lactate and D-glucose in C6 glioma cells. The changing of lactate and glucose concentration in the extracellular medium of C6 glioma cells incubated with 5.5 mM glucose and 11 mM lactate indicated a net production of lactate as the consequence of an active aerobic glycolysis. The 13C enrichments of various metabolites were determined after 4-h cell incubation in media containing both substrates, each of them being alternatively labeled in the form of either [3-13C]L-lactate or [1-13C]D-glucose. Using 11 mM [3-13C]L-lactate, the enrichment of glutamate C4, 69%, was found higher than that of alanine C3, 32%, when that of acetyl-CoA C2 was 78%. These results indicated that exogenous lactate was the major substrate for the oxidative metabolism of the cells. Nevertheless, an active glycolysis occurred, leading to a net lactate production. This lactate was, however, metabolically different from the exogenous lactate as both lactate species did not mix into a unique compartment. The results were actually consistent with the concept of the existence of two pools of both lactate and pyruvate, wherein one pool was closely connected with exogenous lactate and was the main fuel for the oxidative metabolism, and the other pool was closely related to aerobic glycolysis.  相似文献   

15.
The effect of miglitol was studied (20 mg/kg body weight), administered intraduodenally alone or together with maltose, on the absorption and intestinal metabolism of glucose during its translocation from the lumen of the intestine to the blood, using in vitro perfused preparations of complete small intestine-pancreas, proximal small intestine alone, or distal small intestine alone, isolated from normal and non-insulin-dependent diabetic rats. In the absence of a luminal administration of maltose in normal rats, the glucose uptake from the vascular perfusate was greater in the presence (0.52 +/- 0.04 mmol/h) than in the absence (0.39 +/- 0.02 mmol/h) of miglitol (p < 0.05). In diabetic rats, no significant variations were observed in glucose uptake from the vascular perfusate as an effect of miglitol, but the glucose uptake in the presence of this drug was significantly less (p < 0.05) than that observed in normal rats. Portal lactate was significantly greater (p < 0.05) in diabetic than in normal rats and, after administration of miglitol, rose in both normal and diabetic rats, the rise being significantly greater in normal than in diabetic rats (p < 0.01). When maltose was administered luminally (2 g/kg body weight), the values of portal glucose in both normal and diabetic rats were significantly less in the presence of miglitol in the complete as well as in the distal and proximal small intestine preparations (p < 0.05); the glucose uptake from luminal administered maltose was greater in the presence of miglitol in diabetic (p < 0.05) and in normal (p < 0.05) rats except in the complete small intestine of normal rats; and no significant differences were observed in portal lactate levels between normal and diabetic rats in the presence of miglitol. In conclusion, our results show that miglitol administered luminally at the doses employed here, as well as reducing the transport of glucose from the lumen of the intestine into the blood supply, significantly stimulate intestinal glucose metabolism.  相似文献   

16.
Effect of propionic acid on fatty acid oxidation and ureagenesis   总被引:1,自引:0,他引:1  
Propionic acid significantly inhibited 14CO2 production from [1-14C] palmitate at a concentration of 10 muM in control fibroblasts and 100 muM in methylmalonic fibroblasts. This inhibition was similar to that produced by 4-pentenoic acid. Methylmalonic acid also inhibited 14CO2 production from [1-14C] palmitate, but only at a concentration of 1 mM in control cells and 5 mM in methylmalonic cells. Propionic acid (5 mM) also inhibited ureagenesis in rat liver slices when ammonia was the substrate but not with aspartate and citrulline as substrates. Propionic acid had no direct effect on either carbamyl phosphate synthetase or ornithine transcarbamylase. These findings may explain the fatty degeneration of the liver and the hyperammonemia in propionic and methylmalonic acidemia.  相似文献   

17.
1. Chronically cannulated sheep foetuses and suckling lambs were injected with 14C-labelled glucose, fructose or lactate, and sequential blood samples taken under conditions of minimal stress and without anaesthesia. 2. Gluconeogenesis from lactate was not detectable in foetal sheep, but the pathway was active in suckling lambs. 3. Fructose utilization rates were low in foetal sheep, with no measurable conversion into glucose or lactate. 4. The high rates of irreversible loss of both glucose and lactate in the foetus were decreased in suckling lambs. Radioactivity from labelled glucose entered both the lactate and fructose pools in foetal sheep, and entered the lactate pool in suckling lambs. 5. A model is proposed in which carbon flow between glucose, fructose and lactate has been quantified in foetal sheep.  相似文献   

18.
Intestinal uptake and metabolism of galactose were examined in everted jejunal rings from fasted adult rats using 0.2-28 mM sugar. After 60-min incubations, the total uptake (free tissue plus amount metabolized) of galactose ranged from 1.75 mumol/g at 0.2 mM to 21 mumol/g at 28 mM. Free tissue galactose was 17% of the former and 73% of the latter amount while that oxidized to 14CO2 represented only 6-16% of amount taken up. Compared to glucose, similar amounts of galactose are taken up at 0.2-2.0 mM, however, gllcose rtween 0.2 and 2 mM similar amounts of both sugars are metabolized, although a greater portion of the glucose is oxidized to 14CO2. Above 2.0 mM, 2-3 times more glucose is metabolized than galactose. Both uptake and metabolism showed saturability and kinetic analysis revealed two limbed Linweaver-Burk plots, suggesting operation of a high affinity low Km and a low affinity high Km system for sugar transport. In a series of in vivo studies, to assess the role of the intestine in the total body metabolism of galactose, 14C-labeled galactose injected intraperitoneally at a dose of either 50 or 300 mg into fasted normal, sham operated and enterectomized rats, no observable difference in 14CO2 production resulted in between the groups. It would thus appear that although extensive metabolism of galactose may take place in intestinal tissue in vitro, the intestine does not play a significant role in galactose disposition in vivo.  相似文献   

19.
Englitazone (CP 68,722, Pfizer) is a member of a family of drugs known as thiazolidinediones. One member of this family, troglitazone (Rezulin), is currently utilized in the treatment of Type 2 diabetes. Previous studies have focused on the ability of englitazone to increase insulin sensitivity in various tissues. However, little information is available regarding the direct effect of englitazone on hepatic glucose metabolism in the absence of insulin. Therefore, the following studies were conducted to comparatively evaluate the effect of englitazone and glyburide (a representative sulfonylurea) on gluconeogenesis and glycolysis from various substrates in the isolated perfused rat liver (IPRL). In isolated perfused rat livers of 24-hr fasted rats infused with lactate (2 mM), englitazone (6.25 to 50 microM) produced a concentration-dependent decrease (32-93%) in hepatic gluconeogenesis. When dihydroxyacetone (1 mM) and fructose (1 mM) were used as metabolic substrates, englitazone inhibited gluconeogenesis by 31 and 15%, respectively, while increasing glycolysis by 42 and 50%. Similar effects on gluconeogenesis and glycolysis were observed with glyburide, even though the effects with glyburide were more acutely evident, reversible, and of a greater magnitude. Such data suggest alterations in hepatic glucose production may contribute to the decrease in plasma glucose concentrations observed in individuals treated with englitazone and glyburide. These alterations may include effects on several regulatory enzymes (e.g. fructose-1,6-bisphosphatase, pyruvate kinase, and phosphoenolpyruvate carboxykinase), which warrant further investigation.  相似文献   

20.
We evaluated the abilities of isolated perfused hearts from immature (IM) (2.5-3 months), ADULT (11-13 months) and OLD (24-26 months) Fischer 344 rats to tolerate and recover from oxygen deprivation. Hearts were perfused at 60 mmHg for a 30-minute prehypoxic period with oxygenated buffer supplemented with 10 mM glucose (+insulin) and 2 mM acetate, then 30 minutes with substrate-free, hypoxic buffer gassed with 95% N2:5% CO2, and finally reoxygenated for an additional 45 minutes with the same buffer used during the prehypoxic period. During prehypoxia, all groups were similar in ventricular mechanical function, glycogen content, high-energy phosphates (HEP), reduced glutathione (GSH), Ca+2 content, and mitochondrial state 3 rates. At the end of the hypoxic period, glycogen levels were similar and almost completely depleted in all groups, HEP were lower (p < 0.05) in ADULT vs other groups, mitochondrial state 3 rates were decreased (24%, p < 0.05) only in ADULT, and GSH was depleted by 34% in IM vs only 13% in OLD (p < 0.05). After 45 minutes of reoxygenation, IM and OLD had recovered 48% and 45% of their respective prehypoxic function which was two-fold greater than the 23% recovery by ADULT. Loss of cytosolic enzymes, an indicator of sarcolemmal damage, was estimated by measuring lactate dehydrogenase (LDH) release. LDH release and Ca+2 content during reoxygenation in IM were only about half of that observed in ADULT or OLD. We conclude that immature and aged hearts tolerate and recover from hypoxia better than hearts from adults, and that the sarcolemmal membranes of immature rat hearts are less susceptible to damage from hypoxic stress than those of either older group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号