首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
In this paper we present a robust speed control strategy for an induction motor under field orientation. The control framework employed properly represents the induction motor state-space model and its inherent variations, which are treated as structured uncertainties. Applying an /spl Hscr//sub /spl infin//, optimization methodology on this framework we derive a stabilizing controller to meet design objectives and then robust stability and performance against such variations are checked by using /spl mu/-analysis. No on-line tuning is required for the parameters of the derived controller, which is the dynamic system responsible to keep the rotor flux orientation as well as the speed regulation at design levels, irrespective of the motor operating points. A general methodology arose from the usage of the proposed strategy and simulated experiments showed satisfactory results for the robust speed control of an induction motor.  相似文献   

2.
A new method for the implementation of a sensorless indirect stator-flux-oriented control (ISFOC) of induction motor drives with stator resistance tuning is proposed in this paper. The proposed method for the estimation of speed and stator resistance is based only on measurement of stator currents. The error of the measured q-axis current from its reference value feeds the proportional plus integral (PI) controller, the output of which is the estimated slip frequency. It is subtracted from the synchronous angular frequency, which is obtained from the output integral plus proportional (IP) rotor speed controller, to have the estimated rotor speed. For current regulation, this paper proposes a conventional PI controller with feedforward compensation terms in the synchronous frame. Owing to its advantages, an IP controller is used for rotor speed regulation. Stator resistance updating is based on the measured and reference d-axis stator current of an induction motor on d-q frame synchronously rotating with the stator flux vector. Experimental results for a 3-kW induction motor are presented and analyzed by using a dSpace system with DS1102 controller board based on the digital signal processor (DSP) TMS320C31. Digital simulation and experimental results are presented to show the improvement in performance of the proposed method.  相似文献   

3.
A robust wavelet neural network control (RWNNC) system is proposed to control the rotor position of an induction servo motor drive in this paper. In the proposed RWNNC system, a wavelet neural network controller is the main tracking controller that is used to mimic a computed torque control law, and a robust controller is designed to recover the residual approximation for ensuring the stable control performance. Moreover, to relax the requirement for a known bound on lumped uncertainty, which comprises a minimum approximation error, optimal network parameters and higher order terms in a Taylor series expansion of the wavelet functions, an RWNNC system with adaptive bound estimation was investigated for the control of an induction servo motor drive. In this control system, a simple adaptive algorithm was utilized to estimate the bound on lumped uncertainty. In addition, numerical simulation and experimental results due to periodic commands show that the dynamic behaviors of the proposed control systems are robust with regard to parameter variations and external load disturbance.  相似文献   

4.
It is well known that the system performance for an indirect-field-oriented-control induction motor drive degrades under the variation of rotor resistance and in the presence of external load torque. In this paper, a plug-in robust compensator for speed and position control enhancement of an indirect-field-oriented-control induction machine drive is developed. In the case where a controller for the induction machine already exists or is in operation with satisfactory nominal tracking performance, this plug-in compensator, designed using the H/sub /spl infin// loop-shaping techniques, can be plugged into the existing controller without affecting the already satisfactory nominal tracking performance of the existing closed-loop system but with the capability to improve the system performance under plant parameter variations and in the presence of external disturbances. Simulation and experimental results are given to validate the proposed plug-in robust compensator.  相似文献   

5.
传统PID控制器在矿井提升机变频调速系统应用中,由于控制参数固定且不易整定,导致电机转速超调大、电磁转矩和转子磁链脉动大,进而出现矿井提升机调速系统控制效果差的问题。针对这一问题,文中提出一种改进粒子群优化BP神经网络PID控制器的算法。由于BP神经网络算法存在收敛速度慢和极易陷入局部最优的缺点,现将粒子群算法收敛速度快和全局最优特性与神经网络结合,并通过设计神经网络收敛系数进一步加快收敛速度。仿真结果表明,粒子群优化的神经网络控制效果比神经网络好,且效果明显优于传统PID控制器;相较于神经网络PID控制器,矿井提升机转速调节系统稳速调节速度明显提高;与传统PID控制器相比,电机电磁转矩和转子磁链脉动明显降低,具有较强的稳定性和鲁棒性。  相似文献   

6.
This paper proposes a novel sensorless position control system for an interior permanent-magnet synchronous motor. In this paper, a novel rotor position/velocity estimation technique is proposed. This estimation technique only relates to the slopes of the stator currents and does not relate to the parameters or operating conditions of the motor. Neither an extra circuit nor an external high-frequency exciting signal is required here as compared to other position estimation techniques. In addition, the proposed estimator works well in transient, steady-state, and standstill conditions. As a result, the proposed method is very robust and useful. To improve the performance of the position-control system, an optimal controller is proposed. By using this controller, a fast transient response, good load disturbance rejection capability, and satisfactory tracking ability can be achieved. A digital signal processor, TMS-320-LF-2407, is used to execute the rotor position/velocity estimation, the current-loop control, the velocity-loop control, and the position-loop control. As a result, a fully digital position-control system is achieved. Several experimental results validate the theoretical analysis.  相似文献   

7.
This paper describes an effective online method for identifying both stator and rotor resistances, which is useful in robust speed control of induction motors without rotational transducers. The identification method for stator resistance is derived from the steady-state equations of induction motor dynamics. On the other hand, the identification method for rotor resistance is based on the linearly perturbed equations of induction motor dynamics about the operating point. The identification method for both stator and rotor resistances uses only the information of stator currents and voltages. It can provide fairly good identification accuracy regardless of load conditions and be easily incorporated into any sensorless speed controller proposed in the prior literature. Some experimental results are presented to demonstrate the practical use of the identification method. A sensorless speed control system has been built for experimental work, in which all algorithms for identification and control are implemented on a digital signal processor. The experimental results confirm that the proposed method allows for high-precision speed control of commercially available induction motors without rotational transducers  相似文献   

8.
This paper presents a novel nonlinear speed/position control strategy for the induction motor utilizing exact feedback linearization with state and state derivative feedback. The speed/position and flux control loops utilize nonlinear feedback which eliminates the need for tuning, while ordinary proportional-integral controllers are used to control the stator currents. The control scheme is derived in rotor field coordinates and employs an appropriate estimator for the estimation of the rotor flux angle, flux magnitude, and their derivatives. The overall control scheme can be easily implemented with a microprocessor-based control platform. An error sensitivity analysis is included which proves the system to be robust to parameter variation and even more, immune to rotor resistance variation. Simulation and experimental results validate the theoretical part of the paper and reveal the high performance and advantages of the novel control scheme.  相似文献   

9.
This paper presents a new velocity estimation strategy of a nonsalient permanent-magnet synchronous motor (PMSM) drive without a high-frequency signal injection or special pulsewidth-modulation (PWM) pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. Rotor velocity can be estimated through a rotor-position-tracking proportional-integral (PI) controller that controls the position error to zero. For zero and low-speed operation, the PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of the PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of the permanent magnet and is insensitive to parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.  相似文献   

10.
A mutual model reference adaptive system (MRAS) is proposed to implement a position sensorless field-orientation control (FOC) of an induction machine. The reference model and adjustable model used in the mutual MRAS scheme are interchangeable. Therefore, it can be used to identify both rotor speed and the stator resistance of an induction machine. For the rotor speed estimation, one model is used as a reference model and another is the adjustable model. Pure integration and stator leakage inductance are removed from the reference model, resulting in robust performance in low and high speed ranges. For the stator resistance identification, the two models switch their roles. To further improve estimation accuracy of the rotor speed and stator resistance, a simple on-line rotor time constant identification is included. Computer simulations and experimental results are given to show its effectiveness  相似文献   

11.
A method for speed and rotor position estimation of a brushless DC motor (BLDCM) is presented in this paper. An extended Kalman filter (EKF) is employed to estimate the motor state variables by only using measurements of the stator fine voltages and currents. When applying the EKF, it was necessary to solve some specific problems related to the voltage and current waveforms of the BLDCM. During the estimation procedure, the voltage- and current-measuring signals are not filtered, which is otherwise usually done when applying similar methods. The voltage average value during the sampling interval is obtained by combining measurements and calculations, owing to the application of the predictive current controller which is based on the mathematical model of motor. Two variants of the estimation algorithm are considered: (1) speed and rotor position are estimated with constant motor parameters and (2) the stator resistance is estimated simultaneously with motor state variables. In order to verify the estimation results, the laboratory setup has been constructed using a motor with ratings of 1.5 kW, 2000 r/min, fed by an insulated gate bipolar transistor inverter. The speed and current controls, as well as the estimation algorithm, have been implemented by a digital signal processor (TMS320C50). The experimental results show that is possible to estimate the speed and rotor position of the BLDCM with sufficient accuracy in both steady-state and dynamic operation. Introducing the estimation of the stator resistance, the speed estimation accuracy is increased, particularly at low speeds. At the end of the paper, the characteristics of the sensorless drive are analyzed. A sensorless speed control system has been achieved with maximum steady-state error between reference and actual motor speed of ±1% at speeds above 5% of the rated value  相似文献   

12.
The estimation of rotor time constant, or rotor resistance, in a vector-controlled induction machine is necessary to achieve high-performance torque control. A new method of estimating the rotor resistance online, for use in a vector-controlled induction machine, is presented. It uses short duration pulses added to the constant flux reference current idse* and based on the resultant torque command current produced by a proportional-integral controller iqse * adjusts the rotor resistance estimate. This method of self-tuning the vector controller to the rotor time constant, when operating in a closed-loop speed control loop, does not produce torque pulsations when correctly tuned. In comparison to other online methods such as the extended Kalman filter and the extended Luenberger observer, this method does not require voltage sensors and is computationally simpler. The rotor resistance estimation technique is illustrated through simulation and practical implementation of a vector-controlled induction machine  相似文献   

13.
The authors attempt to control induction motors with maximum power efficiency as well as high dynamic performance by means of decoupling of motor speed (or motor torque) and rotor flux. For maximum power efficiency, the squared rotor flux is adjusted according to a minimum power search algorithm until the measured power input reaches the minimum. Since the motor speed is dynamically decoupled from the rotor flux, this can be done successfully without any degradation of motor speed responses. The controller depends on rotor resistance but not on stator resistance. However, the performance of the control scheme is robust with respect to variations in rotor resistance because an identification algorithm for rotor resistance is employed. The identification algorithm for rotor resistance has some advantages over the previous methods. To demonstrate the practical significance of the results, some experimental results are presented  相似文献   

14.
This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.  相似文献   

15.
基于DSP直流电机速度的模糊控制系统研究   总被引:2,自引:1,他引:1  
介绍一种基于模糊控制的直流电机速度控制系统。该模糊控制器设计为二维模糊控制器,以速度反馈和给定转速的误差及误差的变化率作为模糊控制器的输入变量,采用带调整因子的模糊控制器不需要建立模糊查询表。运用DSP强大的计算能力直接按实时计算输出控制量,实现编码器的解码、速度的测量。试验表明系统具有较强的鲁棒性和抗干扰能力,适应于各种不同的场合。  相似文献   

16.
Position sensorless control of reluctance and permanent magnet synchronous machines at zero and low speed is possible using HF voltage injection and proper demodulation. The so-called saliency position, which is tracked by the HF sensorless scheme, is different from the actual rotor position: the difference contains both offset and rotor-position-varying components, which may be explained by carefully considering the HF behavior of the machine and the effect that fundamental excitation and rotor position have upon it. This paper gives insight into the HF behavior of synchronous machines and serves as a practical guide for implementation of stable and robust position estimation at zero and low speed.   相似文献   

17.
For a high-performance servo drive system, it is important to estimate and control the motor speed precisely over a wide-speed range. Therefore, the disturbance-rejection ability and the robustness to variations of the mechanical parameters such as inertia should be considered. This paper shows that the adaptive state estimator and self-tuning regulator based on the recursive extended least squares (RELS) parameter identification method can achieve high-performance speed control over a wide-speed range. The RELS method identifies the variations of mechanical parameters, and the estimated mechanical parameters are used to replace the role of manual tuning by adjusting the gain of the speed controller automatically for good dynamic response. Also, these estimated parameters are used to adapt the Kalman filter, which is an optimal state estimator, to provide good estimation performance for the rotor speed, rotor position and disturbance torque even in a noisy environment. Simulation and experimental results show an improved speed control performance in the wide-speed range  相似文献   

18.
The usual method of induction motor torque control uses the indirect field orientation principle in which the rotor speed is sensed and slip frequency is added to form the stator impressed frequency. Unfortunately, the rotor resistance varies as the motor heats up under load thereby changing the rotor time constant which has a deleterious effect on the torque response. In this paper two new field oriented control schemes are presented which employ rotor end ring current detection and thereby remove the dependence of the controller accuracy on temperature so that the controller is entirely independent of rotor time constant variations. The field orientation schemes do not require an incremental encoder for rotor position sensing. The motor torque can be accurately controlled even down to zero speed operation  相似文献   

19.
We address the problem of meeting the requirements of controllers for the control of speed of induction motors, but under the constraint of not using speed and flux sensors: the so-called “sensorless” control problem. We offer an observer-based solution and present the design of two observers which provide motor speed, flux, and rotor resistance estimates simultaneously. Both observers, based on the rotor flux model in the stationary reference frame, are designed with inputs that enforce first- (conventional) and second-order sliding modes, respectively, on appropriately chosen switching surfaces. We present experimental results of the estimation procedure to demonstrate that only current and input voltage measurements are needed for accurate speed and flux estimation even in the presence of unknown parameters.   相似文献   

20.
The adaptive robust positioning control for a linear permanent magnet synchronous motor drive based on adapted inverse model and robust disturbance observer is studied in this paper. First, a model following two-degrees-of-freedom controller consisting of a command feedforward controller (FFC) and a feedback controller (FBC) is developed. According to the estimated motor drive dynamic model and the given position tracking response, the inner speed controller is first designed. Then, the transfer function of FFC is found based on the inverse model of inner speed closed-loop and the chosen reference model. The practically unrealizable problem possessed by traditional feedforward control is avoided by the proposed FFC. As to the FBC, it is quantitatively designed using reduced plant model to meet the specified load force regulation control specifications. In dealing with the robust control, a disturbance observer based robust control scheme and a parameter identifier are developed. The key parameters in the robust control scheme are designed considering the effect of system dead-time. The identification mechanism is devised to obtain the parameter uncertainties from the observed disturbance signal. Then by online adapting the parameters set in the FFC according to the identified parameters, the nonideal disturbance observer based robust control can be corrected to yield very close model following position tracking control. Meanwhile, the regulation control performance is also further improved by the robust control. In the proposed identification scheme, the effect of a nonideal differentiator in the accuracy of identification results is taken into account, and the compromise between performance, stability, and control effort limit is also considered in the whole proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号