首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glass-ceramics were prepared based on the basic glass composition in mole fraction 0.65 Bi2O3 -0.35 SiO2 with replacements of 0.05 SiO2 by equivalent of one of the oxides: MoO3, WO3, SrO, BaO or CdO. The glass transition temperature of the parent glass is 465 °C which is observed to decrease when doped with Mo, W, Sr, Ba, or Cd oxides. A eulytite phase is formed through controlled crystallization of the parent glass-ceramic and the samples doped with Mo or W, while a Bi2O2SiO3 phase is detected for the samples doped with Sr and Cd. Orthorhombic bismuth silicate crystals were observed only in the sample doped with Ba. SEM images show that all samples have elongated particles with few rectangular or spherical crystals. BiO6 and BiO3 units are assumed to be formed in all samples within the characteristic IR silicate absorption bands.  相似文献   

2.
Ramadan  R. M.  Abdelghany  A. M.  ElBatal  H. A. 《SILICON》2018,10(3):891-899

Bismuth phosphate glasses of the basic composition (Bi2O3 30 mol%-P2O5 70 mol%) with additional dopants 3d TM oxides (0.2 wt%) were prepared by the melting and annealing technique. Combined optical (UV/vis.) and FT infrared absorption spectra were measured for the prepared samples before and after gamma irradiation with a dose of 8 Mrad (8×104 Gy). Optical spectra reveal strong UV absorption bands due to trace iron impurity together with an additional absorption band due to Bi3+ beside characteristic absorption related to specific 3d TM ions with preference for the lower valences due to the reducing effect of phosphate host glass. FTIR spectra show vibrational bands due to phosphate chains with the sharing of absorption bands due to Bi-O vibrations. Gamma irradiation causes limited changes due to the presence of heavy metal Bi3+ ions which show some shielding behavior towards gamma irradiation as revealed by optical and FT infrared absorption measurements. Some suggested photochemical reactions are forward to interpret the changes in the UV spectra beside the formation of an induced phosphorus oxygen hole center (POHC) in the visible region.

  相似文献   

3.
《Ceramics International》2020,46(3):3190-3202
In this study, nuclear shielding qualities of glass-ceramics with chemical composition Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 containing different amount of BaO and PbO were investigated. The μρ values were simulated using GEANT4 toolkit at 0.015–20 MeV wide energy range and the obtained results were verified by theoretical WinXCOM results. The variables such as μρ, HVL, MFP, Zeff, Neff, EBF and EABF were computed to determine the gamma-ray shielding performances of studied glass ceramics. The results revealed that increase in PBO and BaO percentages in glass samples has caused to decrease the HVL, MFP, EBF and EABF values and increase μρ, Zeff values. It has been seen that N28 and S24 samples own superior protection ability against gamma radiation. In addition, the shielding capacity of these glass ceramics against charged and uncharged particles were predicted by determination of MSP and PR values for alpha, proton and ΣR values for neutrons. It has been concluded that PbO and BaO addition improve radiation shielding competences of glass ceramics. The data obtained from this study will be beneficial for designing glass ceramics shields for radiation protection enforcements.  相似文献   

4.
Six different lithium bismuth boro-tungstate glasses with chemical composition 20Li2O-(20-x)Bi2O3-xWO3-60B2O3 (x = 0, 1, 2, 3, 4 and 5 mol%) were produced by the quenching method. Then, the glasses were investigated by means of their optical, mechanical, chemical durability and gamma ray shielding properties. Measured values of density and ultrasonic velocities were used to determine the elastic properties of the glasses. The optical band gap determined using the absorbance spectrum fitting (ASF) model was found to decrease under Bi2O3/WO3 substitution. The presence of BO3, BO4, BiO6, and WO4 structural groups in the glasses was confirmed by Fourier transform infrared spectroscopy (FTIR). The dissolution rate in the glass 20Li2O–15Bi2O3–5WO3–60B2O3 (LBWB5) was found to be 10 times lower than 20Li2O-20Bi2O3– 60B2O3. Mass attenuation coefficients (MAC) values of the produced glasses were determined using the MCNPX Monte Carlo code and Phy-X/PSD program. The photon attenuation parameters such as half value layer (HVL), mean free path (MFP), effective atomic number (Zeff), exposure buildup factor (EBF) and energy absorption buildup factor (EABF) were also studied. The obtained results showed that Bi2O3/WO3 substitution has a direct impact on the photon attenuation abilities of produced glasses. More specifically, HVL values increased from 0.252 × 10?2 cm for LBWB0 glass to 0.275 × 10?2 cm for LBWB5 glass. However, different trends were observed for the photon buildup factors for the produced glasses. It can be concluded that the produced glasses have promising structural, optical, and photon attenuation properties to be used for gamma shielding applications.  相似文献   

5.
《Ceramics International》2020,46(8):11861-11873
In this research paper, we studied the optical and nuclear shielding efficiency of newly developed BGO glasses with the following compositions (in wt%): 32Bi2O3–68GeO2, 42Bi2O3–58GeO2, 47Bi2O3–53GeO2, 52Bi2O–48GeO2, 62Bi2O3–38GeO2. BGO glasses were prepared by traditional melt quenching method. To obtain the band gap values of fabricated BGO glasses, optical absorption spectra were used for evaluation of optical properties. The mass attenuation coefficients (μ/ρ) were achieved for prepared glasses at 0.015–15 MeV photon energies employing MCNPX Monte Carlo code and WinXcom program. Moreover, broad-range of nuclear shielding parameters for gamma ray, neutrons and charged particles such as mass attenuation coefficient, half value layer, effective atomic number, buildup factors, mass stopping powers, projected ranges, fast neutron removal cross sections and damage factors were calculated. The refractive index is calculated from Eopt, As Bi2O3 concentration is enhanced, Eopt is also increased as well as the optical electronegativity and consequently the refractive index. In addition, the results showed that BIGE5 glass sample with highest Bi2O3 contribution has excellent nuclear radiation shielding ability among the other fabricated glass samples.  相似文献   

6.
Heavy metal oxide glasses (composition 60 PbO, 20 Bi2O3 mol%) and containing 20 mol% conventional glass formers SiO2, B2O3, and P2O5 were prepared. Combined optical and Fourier transform infrared absorption spectra were measured for the prepared glasses to justify the role of glass formers in the optical spectra together with the network structural groups in such glasses. Also, the density and molar volume values were calculated to obtain some insight on the compactness and arrangement in the network. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). Optical spectra of all the samples reveal strong UV absorption which is related to the presence of unavoidable trace iron impurities (Fe 3+ ions) contaminated within the raw materials which were used for the preparation of the studied glasses. Additional near visible bands are observed in all prepared glasses due to characteristic absorption of Pb 2+ and Bi 3+ ions. Furthermore, The variations of the luminescence intensity, values of the optical band gap, band tail, and refractive index can be understood and related in terms of the structural changes that take place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate or silicate or phosphate network (BO3, BO4, SiO4, PO4 groups) together with vibrational modes due to Bi-O and Pb-O groups.  相似文献   

7.
Concentration dependences of elastooptic coefficients of lead — bismuth — germanate glasses with compositions from virtually the entire range of glass formation in the system PbO — Bi2O3 — GeO2 are investigated. Partial elastooptic coefficients of the oxide ingredients of the investigated glasses are determined. The results are interpreted with consideration of the nature of the elastooptic interaction in glasses subjected to uniaxial stress. The data can be used for designing compositions of optical media for the light and acoustic lines of acoustooptical devices.Translated from Steklo i Keramika, No. 4, pp. 11–14, April, 1995.  相似文献   

8.
《Ceramics International》2020,46(10):16452-16458
This paper focuses on the effect of Bi2O3 content (up to 80 mol%) on mechanical features and radiation shielding characteristics of boro-tellurite glasses within TeO2–B2O3–Bi2O3 system. The basic mechanical parameters such as oxygen molar volume, packing density, hardness, and elastic moduli were studied based on Makishima–Mackenzie's theory. The shielding studies of the TeO2–B2O3–Bi2O3 glasses included gamma, electron and neutron radiations. The newly developed Phy-X/PSD program and Geant4 simulation were used to calculate the shielding parameters such as mass attenuation coefficient (μ/ρ), tenth value layer (TVL), mean free path (MFP), stopping power (ψe)), removal cross section (RCS), CSDA range, effective atomic number (Zeff), and half value layer (HVL). The concentration of Bi2O3 content had a significant effect on the gamma shielding competence of the investigated glasses. Form the results of gamma shielding studies, the highest μ/ρ (99.845 cm2/g) occurred at 0.015 MeV for TBB80 and the lowest μ/ρ (0.039 m2/g) occurred at 4 MeV for TBB40. The maximum values of Zeff for gamma interaction occurred at 0.02 MeV and they were 77.26, 78.81, 79.94, 80.80, and 81.48 for TBB40, TBB50, TBB50, TBB60, TBB70, and TBB80, respectively. The gamma shielding features of the investigated glasses were compared with those of various ordinary concretes, and Pb-free, Pb-based, and commercial glasses. The Bi2O3 content had also a considerable influence on the electron shielding competence of the tested glasses. The maximum values of Zeff for electron interaction occurred at 14 MeV and they were 44.58, 47.72, 50.41, 52.75, and 53.73 for TBB40, TBB50, TBB50, TBB60, TBB70, and TBB80, respectively. The results revealed that the bismuth boro-tellurite glasses could be useful for the shielding against gamma, electron, and neutron radiations, wherein the Bi2O3 content can be balanced according to the type and energy of radiation.  相似文献   

9.
Lead silicate (LS) glasses of the basic composition PbO 75%, SiO2 25% together with samples containing (∼0.1%) of transition 3d metal oxides (Ti→Cu) were prepared. UV/VIS optical analysis for as prepared and after successive gamma irradiated samples were used to shed more light on the structural modifications that occur due to different dopants and different irradiation doses. The UV-Vis. spectral analysis for undoped glass shows induced absorption bands at 205–400 nm which are assumed to be correlated with the base host glass and dopant transition metal ion doped glasses and dose of irradiation. The positions of the bands are observed to change slightly by gamma irradiation due to the combined effect of induced defects from the host base glass or the transition metal added. Gamma irradiation is observed to cause a decrease in the intensities of the IR absorption bands of the prepared samples accompanied by losing sharpness. These features are related to more amorphicity or disorder by irradiation or to the possible changes in bond angle or bond length in the building groups arrangement.  相似文献   

10.
Bismuth-containing high-silica glass is synthesized by impregnating porous glass matrices in 0.01–0.5 M aqueous solutions of bismuth nitrate with the subsequent heat treatment at a temperature of 50–875°C. The dependences of the spectral-optical properties of the synthesized glass on the concentration of the doped bismuth (0.02–1.17 wt % Bi2O3) and heat treatment temperature are studied. It is found using the method of optical spectroscopy that bismuth is present in glass in different oxidation states—Bi3+, Bi2+, and \(\rm{Bi_5^{3+}}\) clusters. Near infrared spectroscopy in the 7500–4000 cm–1 frequency range reveals that an increase in the temperature results in a gradual decrease in the intensity of the absorption bands due to the vibration of hydroxyl groups and water molecules adsorbed on the surface. The glasses (T ~ 50 and 400°C) exhibit bands at 4445–4443, 4433, and 4417–4415 cm–1, which correspond to the absorption of Bi+ ions.  相似文献   

11.
The present work deals with ecological phosphate and silicate glasses that belong to the oxide systems: Li2O-MgO-P2O5, Li2O-CaO-P2O5, Li2O-MgO-P2O5-Fe2O3; Li2O-CaO-P2O5-Fe2O3 and SiO2-R2O-R′O (R = Na, K; R′ = Mg, Ca), the last system contains certain amounts of ZrO2, ZnO, TiO2. These ecological glasses do not contain toxic substances as BaO, PbO, As2O3, As2O5, fluorine, CdS, CdSe and they have applications as regards the retention and counteracting action of the harmful compounds resulted from the nuclear plants. The replacement of MgO by CaO leads to an insignificant increasing of the thermal expansion index and a slight decreasing of the characteristic temperatures, except the softening point where the effect is opposite. Adding of iron oxide in the phosphate glass composition causes the increasing of characteristic temperatures and the decreasing of thermal expansion index, both in MgO and CaO-containing phosphate glasses. The ecological silicate glasses are used as opal glasses free of fluorine as well as for lead-free crystal glass (CFP) where BaO and PbO are replaced by non-toxic oxides as K2O, MgO, ZrO2, and TiO2. The paper presents different glass compositions and the technological parameters to prepare the ecological glass samples. Both ecological phosphate and silicate glasses have been characterized as regards the characteristic temperatures (vitreous transition point, low and high annealing points, softening point) and the thermal expansion coefficient. This study presents the changes of the thermal parameters when CaO replaces MgO in phosphate glass samples and the role of iron oxide in the vitreous network. In the case of silicate glasses, the viscosity and wetting angle dependency of temperature are presented. The elemental analysis of the ecological glasses was made by XPS (X-ray photoelectron spectroscopy) which also put in evidence the iron species from the vitreous network.  相似文献   

12.
The aim of this study is to examine the effect of Bi2O3 concentration and particle size on Bi2O3 glass. The tested glasses had the composition of SiO2–Bi2O3–CaO–MgO–B2O3–K2O–Na2O–ZnO. Ordinary glass was compared with glasses with 10% Bulk Bi2O3, 10% Bi2O3 Nanoparticles (NPs), 20% Bulk Bi2O3, and 20% Bi2O3 nanoparticles. The mass attenuation coefficients (MACs) of all the investigated glasses were determined between 0.0595 MeV and 1.41 MeV. The results demonstrated that increasing the Bi2O3 content in the glass matrix improved their shielding capability, as well as showing that the NPs provided greater attenuation than the bulk Bi2O3 at the same concentration. The percent increase in the MAC between the bulk and nano Bi2O3 was also calculated and analyzed. From the MAC values, the LAC of the glass was determined and similar results were found compared to the MAC figure. The HVL and MFP of the glass were then analyzed and the results demonstrated that the glass with Bi2O3 NPs attenuated the same amount of photons at a smaller thickness, making the NP shield more effective. The heaviness of the samples illustrated that all the tested samples have a smaller weight than pure lead, making them more desirable. The attenuation factor of the glass (Att. Factor %) showed that increasing the Bi2O3 content in the samples and increasing the thickness of the shields both improve the shielding capability of the glass. Lastly, the dlead of the glasses was determined, indicating that the greatest reduction in thickness occurs near the K-absorption edge of bismuth. Overall, the glass with 20% Bi2O3 NPs demonstrated to have the greatest potential for radiation shielding applications.  相似文献   

13.
The optical absorption spectra of undoped soda lime silicate glass together with two glasses doped with either (1 % nano Fe2O3 ) or with both (1 % Nano Fe2O3 + 5 % cement dust) have been measured from 200 to 2400 nm before and after gamma irradiation with a dose of 8 Mrad. The undoped glass reveals strong UV absorption with two distinct peaks which are attributed trace ferric iron ions present as impurity. Upon gamma irradiation , this base glass exhibits three peaks at 240,310 and 340 nm and the resolution of an induced broad visible band centered at 530 nm. The two doped glasses show an additional small visible band at about 440 nm and followed by a very broad band centered at 1050 nm. Upon gamma irradiation, the two doped samples reveal the decrease of the intensities of the spectrum. The two additional bands are related to ferric (Fe+3) ions to the band at (440 nm) while and the broad band at 1050 nm is due to ferrous iron (Fe+2) ions. The decrease of the intensities of the UV-visible spectrum upon irradiation can be related to of capturing freed electrons during irradiation . Infrared spectra of the glasses reveal repetitive characteristic absorption bands of silicate groups including bending modes of Si–O–Si or O–Si–O, symmetric stretching , antisymmetric stretching and some other peaks due to carbonate , molecular water , SiOH vibrations . Upon gamma irradiation, the IR spectra reveal a small change in the base spectrum while the IR spectra of the two doped glasses remain unchanged. The change of the IR spectrum of the base glass is related to suggested changes in the bond angles or bond lengths of the mid band structural units. The doped glasses show resistance to gamma irradiation because the nano Fe2O3 can capture released electrons and positive holes.  相似文献   

14.
《Ceramics International》2022,48(13):18330-18337
In this paper, 75TeO2–5Na2O–20BaO?xTiO2 (TNB-Tix with x = 0, 05, 10, and 15) glasses were synthesized by the conventional melt-quench technique using analytic grade tellurium oxide (TeO2), barium carbonate (BaCO3), sodium carbonate (Na2CO3) and titanium oxide (TiO2) as starting chemicals. The prepared glasses were studied for their physical features, Raman and UV spectra, and shielding performance against neutrons and charged particles. The optical property was investigated by UV–Vis spectrometry while the structural evolution of the glasses was studied through the Rahman spectra. Charged particles, slow and fast neutrons interaction parameters of the glasses were calculated theoretically and analyzed as well. The prepared glasses were yellowish without any flaws. The mass density of the glasses increased from 5.1 to 5.4 g/cm3 as TiO2 content declined from 15 to 0 mol%. Also, an improvement in the optical bandgap from 2.89 to 3.2 eV was recorded as BaO content increased concerning TiO2 while the refractive index declined from 2.43 to 2.35. Generally, the improvement in the TiO2 content of the glasses produced a rise in the total and scattering cross section of thermal and slow neutrons respectively. In addition, the fast neutron cross section was enhanced from 0.1005 to 0.1015 cm?1 for TNB-Ti00 – TNB-Ti15 glasses. The charged particle shielding parameters showed a strong dependence on the chemical structure of the glass system. The present glass system displayed good properties that could make them useful in optical and shielding applications.  相似文献   

15.
《Ceramics International》2022,48(10):14261-14272
In this study, three heavy metal oxide glasses (A:46.0PbO-42.0Bi2O3-12.0Ga2O3, B:45.94PbO-42.66Bi2O3-10.0Ga2O3-1.4BaO, C:72.8PbO-17.0GeO2-10.2Ga2O3) were synthesized to determine their optical and gamma-ray shielding properties in terms of assessing their potential applications in medical and industrial radiation facilities. Glasses were synthesized using melt quenching method. The optical band gap energy is calculated by the absorption spectrum measured at room temperature. We found a large band at 500 nm that refers to Bi+ions and appears to samples A and B that contain Bi2O3 in their compositions. Optical band gap energies were reported as 2.014 ev, 2.055 eV and 2.430 eV for A, B and C samples, respectively. Next, fundamental gamma-ray parameters were also determined using MCNPX general Monte Carlo code and Phy-X/PSD in 0.15–15 MeV photon energy. Our findings clearly showed that the B sample, which includes the highest concentration of Bi2O3, has a considerable advantage in terms of gamma-ray attenuation. Moreover, the results also showed that sample B has significantly higher attenuation properties than shielding concretes and several glass shields. It can be concluded that Bi2O3 is a useful component for heavy metal oxide glasses in terms of improving gamma-ray shielding capabilities for radiation shielding applications.  相似文献   

16.
As a new member of laser glass family, bismuth‐doped glasses have received rising interests due to the application of fiber amplifiers and laser sources in the new spectral range for the next‐generation optical communication system. For practical application of the glasses, it must be considered on how to improve the luminescence efficiency. Here, we demonstrate that addition of aluminum can enhance the bismuth near‐infrared luminescence by more than 10 000 times, which is right followed by the discussion on the mechanism on why this can happen. We believe this work can be helpful for designing bismuth‐doped multiple component laser glasses with high efficiency. In addition, because of high susceptibility of bismuth to local field change, it can be used as probe ion to envision glass structures. Using bismuth as a luminescent structural probe, we can see the modifier ions of Bi+ are not completely randomly distributed inside germanate glass and they prefer the residence around tetrahedral AlO4 sites.  相似文献   

17.
The effect of SrO/CaO and K2O/Na2O replacements on the crystallization process of glasses based on Na2O-CaO-P2O5-SiO2 system was investigated. The glasses were thermally treated through controlled heat treatment regimes to obtain glass ceramic materials. Combeite Na2Ca2Si3O9, sodium calcium silicate Na2Ca3Si6O16, wollastonite solid solution, and whitlockite Ca3(PO4)2 were identified as major crystalline phases in the prepared thermally treated glasses. No potassium and strontium-containing phases could be detected in the glass-ceramics; potassium seems to be accommodated in the wollastonite structure, while strontium might be incorporated in the sodium calcium silicate structure.The surface reactivity of the prepared glass-ceramic specimens was also studied in vitro in Kokobo's simulated body fluid (SBF). EDAX, SEM, inductively coupled plasma ICP, and FTIR were used to examine the formation of apatite layer's surface and characterize the glass ceramic surface and SBF compositional changes. A decrease in the bioactivity of the glass ceramic was observed as Na2O was replaced by K2O. Strontium together with calcium ions in the apatite layer formed was detected with SrO/CaO replacement.The role played by the glass oxide constituents in determining the crystallization and bioactivity behaviour of the prepared thermally treated glasses was discussed.  相似文献   

18.
《Ceramics International》2022,48(17):24319-24325
Joining is an indispensable process for expanding the application of ceramics and composites. Recently, glasses have been extensively explored for ceramic/composite joining owing to their unique functional needs. However, the difficulty in detecting amorphous materials and lack of enthalpy data make the interfacial reaction mechanism challenging to investigate. In this study, the interfacial reaction mechanism of joints of SiO2f/SiO2 composite-brazed bismuth glass was thoroughly explored. SiO2 was dissolved from the matrix and used throughout the brazing process. In the initial stage, silica reacts with the brazing glass to form Bi4(SiO4)3. Then, owing to the decomposition of Bi4(SiO4)3, the silicate glass replaced the bismuth glass. Finally, some precipitation of SiO2 occurred at the brazing seam owing to an entropy–enthalpy dominating mode. This study may instigate the design of brazing glasses for joining SiO2f/SiO2 composites.  相似文献   

19.
The quaternary glasses of mixed divalent oxides including ZnO, MgO, CdO within a phosphate network former were prepared. Vanadium pentoxide was introduced as a dopant in the range from 0.5 to 3%. Optical and infrared absorption studies for all glass samples were carried out. The optical spectra reveal the presence of both V3+ and V4+ ions in the studied host mixed divalent oxides phosphate glass. Fourier transform infrared absorption spectral analysis indicates the appearance of distinct vibrational bands due to the presence of characteristic phosphate groups depending on the glass composition and the ratio of V2O5 content. The optical band gap and Urbach energy were calculated and discussed in relation to the effect of V2O5 content. Finally, the glasses were optically and structurally examined affter gamma irradiation with a dose of 80 KGy.  相似文献   

20.
To obtain ultra-optical property in glasses, as the basis for photonic applications, the glass forming region of TiO2–Bi2O3–PbO system was investigated and determined by melting series of compositions in the system. The glass-forming boundary region was defined. The best compositions for glass formation were found to be around the eutectic and peritectic regions in the corresponding phase diagram. Generally, stability increased with the addition of TiO2, acting as a conditional glass former, to a maximum of 15TiO2 mol %. Replacing PbO with Bi2O3 in the glass worsened the stability, due to the increase of heavy cation Bi3– in the glass structure. Finally, the refractive index and dispersion of some stable glasses were measured, which were as high as 2.435 and 10.2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号