首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 10(15)-10(18) cm(-2). Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 10(15) cm(-2).  相似文献   

2.
羡一民 《工具技术》2014,48(12):80-84
介绍了激光干涉仪的信号处理方法,分析了单频激光干涉仪中消除直流漂移的方法,双频激光干涉仪中的减法器、频率解调、相位解调技术的特点。  相似文献   

3.
胡玲  潘征宇  洪扁  赵栋 《光学仪器》2014,36(3):258-262,278
基于Altera公司FPGA芯片,提出了一种基于双频激光干涉仪系统中数字相位计的实现方法。该相位计用于测量系统中被测信号和参考信号之间的相位差角度,间接测量激光干涉仪的光程差信息。被测信号经过光电接收器以及A/D模数转换成数字信号送到FPGA芯片中,与FPGA内建的查找表参考信号做正交相关法解调运算,得到一组X-Y值,再利用CORDIC算法计算arctan函数获取相位差,最后计算出干涉仪的光程差,算法的全过程使用FPGA硬件实现。实验结果表明,该相位计使双频激光干涉仪的相位差测量精度在0.01°以内。  相似文献   

4.
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO(2) laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.  相似文献   

5.
The objective of this research is to investigate the effect of slice thickness on the profile accuracy of the model maker (MM) rapid prototyping (RP) system, layer by layer, through non-contact laser probe measurement. A circular triangulation laser probe, model OTM-3A20, made by Wolf & Beck Co., was mounted on a coordinate measuring machine (CMM), as the non-contact sensor. An adjustment device for the laser probe was designed to minimise the cosine error caused by assembly inaccuracy. The alignment test of the measuring laser beam was carried out using a calibrated specimen. The systematic accuracy of the circular triangulation laser probe with respect to the surface roughness and the surface slope of the RP workpiece was investigated using a HP5529A laser interferometer system. The maximum error of 21/2D RP part profile accuracy can be improved from 220 μm to 131 μm, and the average error can be improved from 78 μm to 46 μm as the slice thickness changed from 0.127 mm (0.005 in.) to 0.0127 μm (0.0005 in). However, the machining time increases by about seven fold based on the experimental results. An overall error of 197 μm as measured by the laser probe is attainable using the finest slice thickness 0.0127 mm (0.0005 in.) for the 3D profile accuracy. To verify the accuracy of non-contact laser probe measurement, the 3D profile of the RP part was also measured by a CNC CMM, with good consistency.  相似文献   

6.
A new one-dimensional laser interferometric comparator has been developed for the calibration of the fine linear encoders and scales up to 1600 mm. In the comparator, the interferometer is fully arranged in vacuum and the calibration objects are mounted under atmospheric conditions. The Abbe’s principle on the alignment of workpiece with the measuring beam is satisfied in the structure of a long measuring range. A travelling slide table, on which the calibration objects are mounted, is supported on guide rails by the air bearing and is driven through a recirculating ballscrew. The exhaust of the air bearing is guided to the exterior of the booth in which the comparator is placed. The travel of the table is measured by a reference interferometer with a beam path in vacuum shielded by an evacuated metal bellow, so that the effect of refractive index is eliminated. The laser beam is led by a polarization plane maintaining glass fiber from a self-designed stabilised He–Ne laser, which is placed in an adjacency room, to the beam inlet of the main unit. The measurement system can input the interferometer signal by the encoder signal or the scale signal, and input the encoder or scale data by the interferometer signal. The system resolution is approximately 0.8 nm and maximum travelling measurement speed is 20 mm/s at continuous measurement. The uncertainly (k=2) of measurement is approximately 30 nm in linear encoders of 500 mm length and, approximately 40 nm in scales of 500 mm, although it depends on the length and the characteristics of encoders and scales. It is successful such a high accuracy that the uncertainty of measurement system is smaller than 40 nm in encoders of 1 m length.  相似文献   

7.
A six-channel two-color interferometer has been developed for plasma electron density measurements in the C-2 field reversed configuration experiment. A CO(2) laser is utilized as the main probe beams, while copropagating visible HeNe laser beams are mainly sensitive to vibration. Density measurements in C-2 plasmas have shown that this is a reliable turn-key system. The maximum residual phase noise after vibration compensation is less than ±5°, corresponding to a line integral density of 3×10(18)?m(-2). The time resolution for routine operation is 2?μs.  相似文献   

8.
A bi-directional fringe-counting Michelson interferometer is described that is used in conjunction with a frequency-stabilised laser for precise length measurement. The two counting signals, in phase quadrature and sinusoidally related to path difference, are produced by a novel system that does not employ any form of modulation. Under optimum conditions, the instrument is capable of measuring displacement to a precision of 0.1 μm and the correct fringe-count is maintained even with a signal attenuation corresponding to a 99% loss of intensity in one arm of the interferometer. This performance can be further improved by the application of an automatic gain control system. The interferometer is simple in concept, cheap to produce and easy to set up and align.  相似文献   

9.
Photoacoustics has emerged as a tool for the study of liquid gel suspension behavior and has been recently employed in a number of new biomedical applications. In this paper, a photoacoustic sensor is presented which was designed and realized for analyzing photothermal signals from solutions filled with microbubbles, commonly used as ultrasound contrast agents in echographic imaging techniques. It is a closed cell device, where photothermal volume variation of an aqueous solution produces the periodic deflection of a thin membrane closing the cell at the end of a short pipe. The cell then acts as a Helmholtz resonator, where the displacement of the membrane is measured through a laser probe interferometer, whereas photoacoustic signal is generated by a laser chopped light beam impinging onto the solution through a glass window. Particularly, the microbubble shell has been modeled through an effective surface tension parameter, which has been then evaluated from experimental data through the shift of the resonance frequencies of the photoacoustic sensor. This shift of the resonance frequencies of the photoacoustic sensor caused by microbubble solutions is high enough for making such a cell a reliable tool for testing ultrasound contrast agent, particularly for bubble shell characterization.  相似文献   

10.
光学外差干涉法检测微弱超声振动的研究   总被引:1,自引:1,他引:0  
设计一个具有较高检测灵敏度的光学外差干涉系统,用于检测微弱超声振动信号。采用相干性高的线偏振光作为光源,提高有效干涉强度;利用光阑消除光学噪声,有效控制回授光对光路的影响;以1级光作为参照,使光路调节简单易行。用主频为62.42KHz、幅值为74V的方波信号激励超声探头作为振动信号源,测得振动信号频率和幅值分别为62.38KHz和76.4mV。结果表明该系统能满足微弱超声振动检测要求。  相似文献   

11.
提出了用声光调制器实现的外差干涉仪,采用了相位变化整数周期和周期测量的外差干涉信号处理方法,不仅使干涉仪的测量分辨率提高到λ/2000,同时提高了测量镜允许运动速度,解决了用于大动态范围位移的态动测量问题。该外差干涉测量系统可以用作精密数控中位置环的测量手段。  相似文献   

12.
ABSTRACT

This article documents the design, construction, and implementation of a time interval analyzer (TIA) for measurement of the mirror velocity in a Michelson interferometer. The TIA, a precision counter measures the dynamic variation in the time intervals (i.e. frequency) of a signal. The helium-neon (HeNe) laser signal from the servo mirror control circuitry of a Michelson interferometer provides a nearly constant frequency source. The HeNe signal frequency is directly proportional to the interferometer mirror velocity. A constant mirror velocity is crucial to the proper operation of a Michelson interferometer which modulates the infrared radiation in a Fourier transform spectrometer. The TIA permits a critical evaluation of velocity variations in a single interferometer mirror scan via the time interval analysis of the HeNe laser signal.  相似文献   

13.
介绍一种激光在线检测玻璃管外径及壁厚的方法,根据折射原理建立平行光扫描玻璃管后的光强分布的数理模型,并用计算机模拟出探测器输出信号波形,最后分析了几种主要误差来源和改善措施。  相似文献   

14.
设计了一种基于迈克耳逊干涉光路的相位测量系统,将单臂作为检测端完成了对玻璃平板厚度均匀性的直接测量和分析。该系统由CCD采集干涉图样,利用傅里叶变换条纹分析术和相位解包裹技术提取干涉图中所包含的待测相位信息;对于傅里叶变换法中频谱旁瓣中心无法准确定位的问题,采用三角变换法去载频,从而不需要准确地得知频谱旁瓣的中心位置就可以计算出相位结果,消除了人为估算和垂轴方向上的微小载频分量给测量结果带来的误差。实验测量了多块玻璃平板的厚度均匀性。测量结果显示:使用像元大小为4.65 μm×4.65 μm的CCD相机,测量玻璃平板两表面在长度方向和宽度方向上的厚度均匀性的理论精度分别达到0.93%和0.92%,表明本系统基本满足玻璃平板厚度均匀性测量的要求,且对干涉图频谱旁瓣的定位精度和载频的方向精度要求较低。  相似文献   

15.
We present a phase-shifting interferometer based on a frequency-tunable diode laser calibrated by an optical frequency comb and the Carre? algorithm. By use of the frequency control strategies of locking the diode laser to different comb modes and scanning the repetition rate, an arbitrary single optical frequency synthesizer is obtained. The relative laser frequency uncertainty is 5.7 × 10(-12) for 1 s averaging time with tracing to an Rb clock and accurate phase steps are achieved by optical frequency tuning. The surface topography of a standard sphere is measured by this phase-shifting interferometer based on a flat reference. The phase measurement repeatability is λ∕200. With this technique, phase measurement uncertainties from the laser frequency and phase steps are negligible.  相似文献   

16.
A quadrature optical detection technique, based on polarized balanced-homodyne interferometry, has been developed for specific application to apertureless near-field scanning optical microscopy (ANSOM). With such technique, multiplicative background interference, inficiating quantitative optical imaging in standard homodyne-based ANSOM, can be suppressed. Periodic modulation of interferometric optical phase, typically employed in heterodyne-based ANSOMs even to such purpose, is not needed in the present configuration. Homodyne detection also facilitates detection of harmonic components of the ANSOM optical signal at the probe/sample distance modulation frequency, necessary for near-field discrimination and suppression of artifacts. Furthermore, since amplitude signal is not affected by phase fluctuations generated in the optical path of the interferometer, an optical fiber could be included in one interferometer arm, to couple the ANSOM head to the detection system, obtaining improved versatility of the instrument. A demonstration of the interferometer performance is given by a test confocal optical scan of a mirror surface. This technique, as applied to near-field microscopy, is anticipated to provide absolute values of optical contrast not depending on background interference and topography artifacts.  相似文献   

17.
High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.  相似文献   

18.
We report on the construction details of a compact autocorrelator set‐up for the measurement of the width of infrared laser pulses at the focal plane of a microscope for two‐photon excitation fluorescence imaging. One of the novelties of the set‐up, which leads to an improved measurement accuracy, is the use of a modulation technique that is achieved by mounting one of the interferometer mirrors on a loudspeaker driven by a sinusoidal bias at low frequency. A non‐linear least‐square routine selects only that part of the fluorescence signal that is modulated at the same frequency as the loudspeaker bias. To further increase the accuracy, the laser pulse width is obtained from a series of measurements at different values of the modulation bias. The autocorrelator is a compact single bread‐board (10 × 20 cm); it is PC‐controlled both for the acquisition and the analysis of the data and can be coupled to different ports of the microscope. The increase in the pulse width measured for three different ports of the microscope is well accounted for by the group velocity dispersion and the glass thickness of the optics found along these paths.  相似文献   

19.
The integrity of the wheel is very important for the safety of railway. In this paper a laser-ultrasonic diagnostic measurement procedure has been designed for the inspection of the train wheels with the aid of a FE-model simulating the ultrasound propagation within the wheel itself.The laser-ultrasonic method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-energy pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up the testing set-up time and make it more flexible. This is an important advantage with respect to the conventional NDT technologies currently applied to train component diagnostics, as contact phase array methods. Laser ultrasonics is a complete remote technique since both the laser source and the receiving probe are installed in the proximity of the wheel directly on the bogie and therefore it is a more flexible technology with respect to standard techniques applied for wheel train diagnostics, as phased array.The applications of laser-ultrasonic technique available in the state-of-the-art work with high energy ultrasonic waves to guarantee good signal to noise ratio. Therefore, conventional laser-ultrasonic systems operates under ablative regime that assures high energy ultrasonic waves generation. On the other hand, the ablation produces damages on the surface of the component inspected. In this paper, it has been demonstrated that it is possible to work with lower energy waves, i.e. in the limit between ablative and thermo-elastic regime, if the experiment is properly designed on the basis of a numerical model. This operation regime allowed to guarantee a material removal below the threshold admitted in rail wheel application. The diagnostic procedure developed has been applied for the inspection of train wheels provided by the Italian railway company Trenitalia, on which dominant wheel failure cracks have been expressly created.  相似文献   

20.
全相位谱分析在自混合干涉位移测量中的应用   总被引:1,自引:0,他引:1  
杨颖  李醒飞  寇科  王错 《光学精密工程》2012,20(8):1740-1746
提出基于全相位谱分析的自混合干涉信号处理方法,用于减小激光自混合干涉位移测量的误差。首先,基于三镜法布里-珀罗腔模型介绍了自混合干涉系统的数学模型,分析了自混合干涉信号的产生机理和特性。然后,研究了弱反馈条件下自混合干涉位移测量方法,采用全相位谱分析算法进行相位测量,重构外部反射体位移曲线;讨论了信号处理算法原理并进行了算法仿真。最后,进行自混合干涉位移测量实验,并给出压电陶瓷位移测量实验结果。结果表明,全相位谱分析算法可将自混合干涉位移测量误差减小到4.4nm;应用全相位谱分析算法分析自混合干涉信号,可在不增加外部光学元件的前提下将位移测量误差减小到纳米量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号