共查询到19条相似文献,搜索用时 78 毫秒
1.
临界面法预测微动裂纹萌生特性和微动疲劳寿命 总被引:2,自引:0,他引:2
微动疲劳是造成飞机、船舶、车辆、建筑、核能、海洋工程等失效的主要原因。根据能量的转变提出SSI剪应变能临界面法。以45#钢为例,建立微动桥有限元模型,用SSI剪应变能临界面法对微动桥的微动疲劳裂纹萌生特性和寿命进行预测。通过与试验数据对比证明SSI临界面法用于微动疲劳裂纹萌生特性和寿命预测的可行性。 相似文献
2.
为研究压装轴微动疲劳主裂纹的萌生位置,进行由锁紧环、压装垫环和压装轴试样组成的过盈配合结构的旋转弯曲加载条件下的微动疲劳试验,观察不同名义弯曲应力对应的试样的主裂纹萌生位置,发现主裂纹位于比张开区更深的接触内部。针对试验加载条件,采用有限元软件ANSYS,进行弹性有限元仿真分析,运用Ruiz法预测不同名义弯曲应力下试样的主裂纹萌生位置,并将Ruiz法的预测结果与疲劳试验的测量结果进行比较。结果表明,随着名义弯曲应力的增加,预测误差大幅度的增加。研究发现,接触边缘处发生的接触面张开现象是引起预测误差的主要原因;基于Ruiz法预测压装轴微动疲劳裂纹萌生位置时,需要考虑在接触边缘处接触面张开区宽度的影响,特别是对于名义弯曲应力与接触压力的比值较大的压装工况。 相似文献
3.
针对过盈配合的连杆小头和衬套之间存在的微动疲劳现象,建立连杆有限元模型,用ANSYS软件对其进行微动疲劳仿真,提取并分析连杆-衬套接触区上的应力、位移数据,分别用RUIZ综合参数法、MSR临界面法、基于损伤力学的热力学耗散势函数法预测衬套微动裂纹萌生位置。结果表明,3种方法预测的裂纹萌生位置保持一致,即衬套接触边缘内侧最易萌生微动裂纹。用方足桥-试件模拟件进行微动疲劳实验验证。结果表明,3种方法预测位置与实验试件断裂位置保持一致,其中基于热力学势函数法预测结果最为准确。 相似文献
4.
根据微动接触副的几何结构和接触状态,以柱面桥脚微动桥与平面试样接触为研究对象,基于ANSYS软件建立其微动疲劳损伤有限元模型,分析应力强度和应力强度幅度对微动裂纹萌生特性的影响规律,采用SWT临界面法预测微裂纹萌生位置并与试验结果进行比较。结果表明:柱面桥脚微动桥与平面试样接触副在接触区存在应力集中,最大应力强度幅度出现在微动桥脚外侧接触区,在轴向应力作用下,此处的应变量最大,易于裂纹的萌生;SWT临界面法预测裂纹萌生位置与最大应力强度幅度所在位置一致,并与试验结果吻合。 相似文献
5.
钢丝微动疲劳过程中,钢丝裂纹萌生特性直接影响其裂纹扩展特性,进而制约钢丝微动疲劳寿命,因此开展钢丝微动疲劳裂纹萌生寿命预测研究具有重要意义。基于有限元法、摩擦学理论和断裂力学理论,运用Smith-Watson-Topper(SWT)多轴疲劳寿命准则建立考虑磨损的钢丝微动疲劳裂纹萌生寿命预测模型,基于多种不同的钢丝疲劳参数估算方法对钢丝的微动疲劳裂纹萌生寿命进行了预测,并探究接触载荷、疲劳载荷、交叉角度及钢丝直径等微动疲劳参数对钢丝微动疲劳裂纹萌生寿命的影响规律。结果表明:基于中值法的预测结果最接近实际值;在微动疲劳过程中,钢丝微动疲劳裂纹萌生寿命主要与接触载荷和疲劳载荷相关。通过引入微动损伤参数建立简化的适用于钢丝绳的钢丝微动疲劳裂纹萌生寿命预测模型,通过与考虑磨损的预测模型计算结果进行对比验证了该模型的准确性。 相似文献
6.
微动接触应力的有限元分析 总被引:7,自引:1,他引:7
以方足微动桥,试样接触几何条件为研究对象,应用ANSYS有限元分析软件对其接触面上的应力分布进行弹性有限元分析,验证用ANSYS所建计算模型的正确性,分别计算不同名义接触压力和不同摩擦因数条件下接触状态(粘着区、滑动区、张开区)和接触面应力分布,选取不同水平的循环载荷进行计算,研究接触状态和应力分布随循环载荷的变化情况。结果表明,微动疲劳过程中接触表面拉应力与剪应力在接触面的粘,滑交界区存在突变,微动疲劳裂纹正是在这一区域内萌生并扩展,计算结果与实验结果吻合很好。 相似文献
7.
8.
9.
在不同弯曲载荷下,对40CrNi2MoA合金钢进行弯曲微动疲劳试验,建立其弯曲微动疲劳下的循环次数-应力曲线;通过对微动损伤区的微观分析,研究该合金钢的弯曲微动疲劳特性。结果表明:40CrNi2MoA钢弯曲微动疲劳应力曲线不同于常规疲劳应力曲线,呈现\"C\"型曲线特征;随着弯曲载荷的增加,微动依次运行于部分滑移区、混合区和滑移区;相对于另外两个区域,混合区试样的裂纹更易萌生、扩展且微动疲劳寿命最短;试样表面的磨损机制主要为磨粒磨损、氧化磨损和剥层;由于接触应力和弯曲应力的影响程度不同,弯曲微动疲劳裂纹的扩展分为三个阶段,即接触应力控制阶段、接触应力与弯曲疲劳应力共同控制阶段和完全受弯曲应力控制阶段。 相似文献
10.
微动疲劳易引起钢丝表面磨损和横截面积损失,进而造成钢丝断裂失效并缩短钢丝绳使用寿命。不同微动疲劳参数(接触载荷、疲劳载荷、钢丝直径和交叉角度)引起差异的钢丝微动疲劳磨损特性,故研究微动疲劳参数对钢丝微动疲劳磨损演化规律影响至关重要。基于摩擦学理论和Marc仿真软件构建钢丝微动疲劳磨损模型,探究接触载荷、疲劳载荷、交叉角度和钢丝直径对钢丝微动疲劳磨损演化的影响规律。结果表明:钢丝微动疲劳磨损体积主要与接触载荷和疲劳载荷有关;疲劳钢丝的磨损深度、磨损率及磨损体积随着接触载荷的增加而增大,且不同接触载荷下疲劳钢丝磨损体积均随着循环次数的增加而呈线性增加;随疲劳载荷幅值的增加,疲劳钢丝的磨损深度、磨损率及磨损体积均呈增加趋势;在不同疲劳载荷范围下疲劳钢丝的磨损体积均随着循环次数的增加而呈线性增加;当接触载荷、疲劳载荷及钢丝间摩擦因数相同时,不同交叉角度和不同加载钢丝直径下疲劳钢丝的磨损体积相同。 相似文献
11.
关于微动磨损与微动疲劳的研究 总被引:16,自引:2,他引:16
微动磨损与微动疲劳是2种主要的微动模式,造成的损伤在工业中相当普遍,并可能引发灾难性的后果。主要研究了们移幅度、压力和疲劳应力3个基本微动参数,并以获得的微动区域、微动图为基础,分析了微动磨损与微动疲劳的运行机制和破坏规律。为更好地了解微动磨损与微动疲劳之间的内在联系,进一步探讨了接触磨损与局部疲劳、局部疲劳与整体疲劳之间的竞争机制。 相似文献
12.
13.
14.
15.
Lebedinskii S. G. Moskvitin G. V. Pugachev M. S. Polyakov A. N. 《Journal of Machinery Manufacture and Reliability》2020,49(2):144-149
Journal of Machinery Manufacture and Reliability - An assessment method for characteristics of low-rate development of fatigue cracks under operational loading is proposed. The method is based on... 相似文献
16.
The competitive aspect of surface and subsurface fatigue crack propagation in hardened components subjected to rolling contact fatigue is highlighted, the former being greatly affected by the working conditions (in particular the presence of tangential stresses and lubricant), the latter depending mainly on the inclusions content and on the hardness profile. In order to determine which one of these kinds of damage is favoured, initial data consisting of contact load, rolling and sliding speed, theological properties of the lubricant, material hardness and inclusions content are necessary. The concurrent role of asperities and Hertzian stress field in determining surface crack propagation is explained with the approach of the “quiescent zone.” calculating the stress intensity factors range in a contact cycle and considering the pumping effect of the fluid possibly present on the contact surface. Inherent defects (especially oxides) are thought to be responsible for subsurface cracks origin and the Murakami formula for short cracks is extrapolated to describe their growth threshold, which also depends on the hardness and therefore on the depth in surface hardened components. A crack propagation index is then defined as a ratio of applied to threshold stress intensity factor, both for surface and subsurface cracks. Evaluating this index for a general operating condition, it is possible to determine which damage mechanism is favoured, taking into account the decisive effect of the hardness profile. 相似文献
17.
18.
19.
Frictional force behavior during fretting fatigue and its interdependence on other fretting variables are investigated. Both coefficient of static friction and the normalized frictional force (i.e., the ratio of frictional force and normal contact load) increase during the earlier part of a fretting fatigue test and then both reach to a stabilized value. The variation of temperature in the contact region and normalized frictional force with increasing cycle numbers and bulk stress show similar trend implying that normalized frictional force represents the average friction in the contact region during a fretting fatigue. An increase in bulk stress, relative slip, and hardness of pad material results in an increase of the normalized frictional force, while an increase in contact load, frequency and temperature decreases the normalized frictional force. The normalized frictional force is also affected by the contact geometry. On the other hand, coefficient of static friction increases with an increase in the hardness of mating material, temperature and roughness from shot-peening treatment, but is not affected by contact geometry and displacement rate. Further, the normalized frictional force is not affected by the contact geometry, roughness and applied bulk stress level when fretting fatigue test is conducted under slip controlled mode, however it increases with increasing applied relative slip and decreasing contact load in this case. 相似文献