首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
化学镍钯金为近几年新兴的表面处理方式,因其具备优良的打线和焊接性能被应用得越来越广泛;目前行业内对化学镍金表面处理的镍金层可靠性研究是非常多且有明确的一套接收标准,但对于化学镍钯金表面处理的钯层的一些可靠性研究目前却是非常少的。本文针对化学镍钯金镀层其钯层表面的孔洞黑点进行老化前后的可靠性验证,确定正常、轻微、中度、严重四种不同程度的孔洞黑点推拉力均可满足标准,中度以下的孔洞黑点可以直接放行使用,严重程度的孔洞黑点则需要做进一步的可靠性评估;针对孔洞黑点制定出的管控标准,为企业标准提供依据支持,对镍钯金产品质量管控前移具有重要的意义,可供业内进行参考。  相似文献   

2.
可焊性是印制电路板组装产品极重要的性能之一。文章讨论了化学镍钯金(ENEPIG)的可焊性,首先对化学镍金(ENIG)和化学镍钯金的特点进行了对比,然后通过实验对影响产品焊接的可能因素进行了验证,得出钯层的有效控制能解决化学镍钯金的可焊性问题。  相似文献   

3.
在微组装工艺应用领域,为保证印制电路板上裸芯片键合后的产品可靠性,采用化学镀镍钯金工艺(ENEPIG),可在焊接时避免“金脆”问题、金丝键合时避免“黑焊盘”问题。针对化学镀镍钯金电路板的金丝键合(球焊)可靠性进行了研究,从破坏性键合拉力测试、第一键合点剪切力测试以及通过加热条件下的加速材料扩散试验、键合点切片分析、键合点内部元素扫描等多方面分析,与常规应用的镀镍金基板键合强度进行了相关参数对比,最终确认了长期可靠性满足产品生产要求。此外,对镍钯金电路板金丝键合应用过程中需要注意的相关事项进行了总结与说明。  相似文献   

4.
随着产品小型化的发展,微小LP封装器件的应用越来越广泛,其中中央焊盘焊点空洞率成为影响产品功能的关键因素.主要研究镍金表面处理印制电路板上LP封装器件中央焊盘锡铅焊点空洞问题.介绍了焊点空洞的产生机理、焊接工艺难点及空洞控制方法,提出了优化焊盘设计、优化模板开孔设计、强化焊膏使用控制、控制焊膏印刷精度、控制贴装精度和优化焊接工艺参数等六大保证措施.经试验验证,同时采取6项措施后,有效地控制了镍金表面处理的PCB上LP封装器件的中央焊盘焊点空洞问题.  相似文献   

5.
PCB上的线路日趋精细,焊盘间距也在不断缩小。目前,PCB上的最小焊盘间距可以达到0.050 mm。而在这些小间距的焊盘上进行化学镍金处理后,镍足就会从焊盘边缘往外延伸,从而导致渗金短路。分析了镍足变化的主要影响因素,研究了铜箔毛面粗糙度,钯离子吸附和沉镍药水活性对镍足生长的不同作用,总结了减小镍足的若干措施。  相似文献   

6.
作为印制电路板表面处理的一种方式,化学沉镍金能起到保护焊接镀层并提供可导电、可焊接界面的功能,因而得到广泛应用。然其本身仍有一些难以消除的问题,其中就包括线路阻焊剥离。本文讨论导致化学沉镍金板线路阻焊剥离的因素,包括阻焊后固化的温度(T)和时间(t)、油墨厚度(H)、油墨特性、沉镍金参数和沉镍金药水特性的影响。文章最后讲述一些基于作者经验的消除化学沉镍金板线路阻焊剥离的相对有效的措施。  相似文献   

7.
概述了化学镍/化学钯/浸金(ENEPIG)表面涂(镀)覆层的优点。它比化学镍/浸金(ENIG)有更好的可焊接性和焊接可靠性。化学镍/化学钯/浸金表面涂(镀)覆层应该是有发展前景的。  相似文献   

8.
本文从化学镍金的原理出发,探讨了黑焊盘的形成机理、影响因素及控制措施,并结合实际案例详细介绍了有关黑焊盘失效分析的思路和方法.  相似文献   

9.
主要对化学镍钯金表面处理工艺原理进行介绍,通过挠性电路板化学镍钯金后引线健合能力、可焊性、抗老化等一系列可靠性测试,验证其相对其它表面处理技术更加优越,特别适用于表面贴装混合组装板等要求高连接可靠性的产品上,并且满足无铅组装工艺所有需求,非常适合挠性板、封装基板等的表面处理PCB制造。  相似文献   

10.
本文通过对一例非典型原因导致的焊盘可焊性不良而引起的焊接不良案例的分析,介绍了焊接失效的分析过程。对于润湿不良且无明显的氧化、污染或被腐蚀的特征的非典型焊盘,业界一直找不到真正的原因。而本文则通过引入光电子能谱的表面分析手段,对润湿不良的焊盘的表面化学物质组成及其深度分布进行了分析,结果发现镍镀层中镍的扩散至金表面导致了焊盘可焊性的急剧下降,最终揭示了导致使用该焊盘进行焊接而引起的焊接不良的主要原因,为下一步避免或控制类似问题提供了改进的依据。  相似文献   

11.
概述了化学镀镍/化学镀钯/浸金涂(镀)覆层的优点,它比起化学镀镍/浸金,不仅更适用于IC封装,而且提高了可靠性,降低了成本。  相似文献   

12.
Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.  相似文献   

13.
IC封装载板的新型表面涂饰层——ENEPIG   总被引:1,自引:0,他引:1  
文章介绍一种新型的化学镀镍化学镀钯与浸金表面涂饰层,克服了化学镀镍浸金涂层的缺点,更加适合于IC封装载板上应用。  相似文献   

14.
化学沉镍金是一种能满足大多数的组装要求的可行的表面涂层,不仅具备抗氧化功能,并有平整的PAD表面,在电子\通讯领域有十分广泛之用途,但化镍金焊接后存在黑垫问题一直困扰PCB制造商、药水供应商以及下游SMT客户,目前PCB业界对化镍金焊接后黑垫产生原因比较模糊未有明确定义,本文将通过试验对比对化镍金板焊接后出现黑垫产生原因进行分析及探讨。  相似文献   

15.
通过化学自催化反应在半导体晶圆I/O铝或铜金属垫上沉积具有可焊接性的镍金/镍钯金层,此工艺已在MOSFET、IGBT、RFID、SAW Filter等产品上得到广泛应用。着重阐述了在新产品设计和工程评估阶段,对于晶圆产品本身应予以考量的因素,如钝化层种类及厚度,I/O金属垫的成分及结构,切割轨道上金属图形的大小及钝化层的覆盖,不同I/O pad的电势等。其中一些因素导致的问题会直接影响化学镍金/镍钯金后产品的性能应用。在化镀工艺过程中,要充分了解产品本身结构以及可能造成的相应缺陷及问题,并且应综合考虑这些因素的影响。  相似文献   

16.
文章简述了当下流行的有机涂覆(OSP)、化学镀镍浸金(ENIG)、化学镀镍镀钯浸金(ENEPIG)等表面处理技术的发展现状;并对浸银(IAg)、浸锡(ISn)和直接浸金(DIG)以及自组装单分子(SAM)等新工艺进行了简单讨论,并提出了一些降低工艺成本,改进技术,提高工艺可靠性的方法。  相似文献   

17.
The effects of minor Ni addition (0.05 wt.%) on the microstructures and mechanical reliability of the lead-free solder joints used in the pin through hole (PTH) components were carefully investigated using a scanning electron microscope (SEM), a field-emission electron probe x-ray microanalyzer, and a pull tester. The PTH walls (i.e., Cu) of printed circuit boards (PCBs) were coated with organic solderability preservative (OSP) or electroless nickel/immersion gold (ENIG) surface finish before soldering. During soldering, the pins of the electronic components were first inserted into the PTHs deposited with OSP or ENIG, and then joined using a Sn–3Ag–0.5Cu (SAC) solder bath through a typical wave-soldering process. After wave soldering, a rework (the second wave soldering) was performed, where an SAC or Sn–0.7Cu–0.05Ni (SCN) solder bath was employed. The SCN joints were found to possess a higher tensile strength than the SAC ones in the OSP case. The sluggish growth of Cu3Sn, along with few Kirkendall voids at the solder/Cu interface caused by minor Ni addition into the solder alloy (i.e., SCN), was believed to be the root cause responsible for the increase in the strength value. However, the mechanical strength of the PTH components was revealed to be insensitive to the solder composition in the alternative case where an ENIG was deposited over the PTH walls. The implication of this study revealed that minor addition of Ni into the solder is beneficial for the solder/Cu joints, but for the solder/Ni(P) joints.  相似文献   

18.
Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号