首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of fertilization with urea and ammonium nitrate on nitrogen mineralization was studied in a series of laboratory incubation experiments. The samples (humus layer) were collected from field experiments with different applications of fertilizers during a period of 11–14 years. The nitrogen fertilization influenced some chemical properties of the humus layer such as pH, N-Kjeldahl content and the content of inorganic nitrogen, especially in the samples from North Sweden. Nitrate nitrogen was formed in humus samples classified as non-nitrifying in several cases, usually after urea fertilization.  相似文献   

2.
Nitrogen response of maize under temporary flooding   总被引:1,自引:0,他引:1  
The adverse effect of temporary flooding on maize (Zea mays L.) yields and the nitrogen management required to mitigate the effect of flooding were studied for five years in field experiments on Choa sandy loam soil.Maize yields decreased with increase in duration of flooding and with decrease in the age of the crop at the time of flooding. Flooding periods exceeding 48 hours caused significant crop damage. The loss in yield on account of flooding was, however, less in 40-day old crops. A 24 hours flooding decreased grain yield by 17.7 and 3.9 per cent in 20-day and 40-day old crops respectively. Maximum yield loss amounted to 1.23 t ha–1 of grains with 72 hours of flooding of 20-day old crop indicating that a younger crop is more prone to the deleterious effect of flooding.The nitrogen content of grains decreased significantly with increase in flooding period. A supplemental dose of 7 kg N ha–1 as urea spray significantly increased grain yield. Soil application of supplemental nitrogen at the rate of 14 or 20 kg N ha–1 enhanced the maize yield by 0.7 to 0.9 t ha–1 under temporary flooded conditions. Spraying with urea solution increased nitrogen removed by the crop.Successive increments of 60 kg N ha–1 gave an additional yields of 1.23, 1.01 and 0.41 t ha–1 over the crop that received no nitrogen. Flooded maize responded to even higher rates of N fertilization than the dose of 120 kg N ha–1 which is recommended in this region.  相似文献   

3.
Nitrogen demand from soybean seeds during seed filling is very high and has been proposed as the cause of nitrogen remobilization and leaf senescence. Previous research has not shown consistent effects of late season fertilization on seed yield, while its effects on leaf senescence have not been evaluated. Two field experiments were performed to determine the effects of a late season N fertilization on leaf senescence and fall, seed yield and its components, and residual soil nitrate, and to evaluate the potential risk of groundwater contamination. Two rates of nitrogen (50 and 100 kg N ha–1) were applied at the R3 and R5 development stages. Nitrogen fertilization, either at R3 or R5, increased soil nitrate availability during the seed-filling period. Seed yield, seed number and protein content were not affected by N fertilization. The addition of 100 kg N ha–1 produced a small delay of 1–2 days in the leaf fall, and slightly increased seed size (3.6%). Our results suggest that increasing soil N availability during the seed-filling period is not an effective way to delay leaf senescence or to increase seed growth and yield of soybean. Nitrogen fertilization increased the level of residual nitrate in the top soil at one site (the one with lowest seed yield), increasing the risk of nitrate leaching during subsequent fallow.  相似文献   

4.
Fertilization at plantation establishment and later age is often required to maximize stand growth of slash pine (Pinus elliottii) in subtropical Australia. A field experiment was conducted to examine stand growth response of slash pine in the first 11.5 years of plantation following (1) initial fertilization at plantation establishment with phosphorus (P) at 11, 22, 45 and 90 kg P ha–1 which were either banded or broadcast in the presence or absence of basal fertilizers containing 50 kg nitrogen (N) ha–1, 50 kg potassium (K) ha–1 and 5 kg copper (Cu) ha–1 and (2) additional application of 40 kg P ha–1 at age 10 years.The initial P fertilization significantly increased the stand growth in the first 9.6 years. The P banded application was more effective in improving the stand growth than the P broadcast application. Application of the N, K and Cu basal fertilizers did not affect the stand growth. Overall, 53–73% of the variation in basal area and volume growth in the first 9.6 years was explained by the initial P fertilization, indicating that P deficiency was the major factor limiting the stand growth under the experimental conditions. Optimum plantation age, at which the maximum periodical annual increment (PAI) of basal area was obtained, increased from age 10.9 to 12 years when the initial P rate increased from 11 to 90 kg P ha–1. Application of additional 40 kg P ha–1 at age 10 years resulted in a further improvement in the stand growth at age 11.5 years. With 66% of the variation in basal area PAI between ages 9.6 and 11.5 years, 50% was explained by the initial P fertilization and 16% by the additional P applied at age 10 years. Similarly, 51% and 12% of the variation in volume PAI were attributed to the initial P fertilization and the additional P application, respectively. This highlights the need of refertilization with P on some established stands of slash pine at later ages.  相似文献   

5.
In order to make more efficient use of mineral nitrogen fertilizers, the mineralization of organic N has to be fully understood and taken into account when meeting the nitrogen demand of crops. Aerobic long-term incubation experiments (147 days) based on the method by Stanford and Smith (1972, Soil Sci Soc Am Proc 36: 465), modified by Nordmeyer and Richter (1985, Plant Soil 39: 433), were carried out with paddy soils (Typic Epiaquepts) from two different locations in the Taihu Region in Eastern China, each in three depth increments (0–30, 30–60, 60–90 cm). The two soils had pH (H2O) values between 6 and 7, silty clay loam texture, C org contents (0–30 cm) of 8.9 and 16.6 g kg–1 and N tot contents of 1030 and 1650 mg kg–1, respectively. Mineralization parameters were estimated from the cumulative amounts of leached nitrate-N via non-linear regression, using a two-pool approach based on first-order kinetics reactions. The results were compared to those from incubation experiments carried out with topsoils from the southern edge of the Chinese Loess Plateau (Roelcke et al., 1996, Trans. 9th Nitrogen Workshop, Braunschweig, p, 313). The optimized parameters were used to simulate the N regime in paddy soils with a deterministic model (Han et al., 2001, Proc. Int. Conf. China, p. 411). A winter wheat growing period (November 1995 to June 1996) in Wuxi County was simulated. A total of 220 kg ha–1 mineral N fertilizer were applied as NPK and urea, split into four doses. Simulated results were compared to the measured mineral nitrogen (N min) contents over the growing season. Cumulative aerobic N mineralization (0–1.0 m profile) yielded 84 kg N ha–1. The modelled total cumulative N losses amounted to 76 kg N ha–1 or 35% of the N applied.  相似文献   

6.
Growth and yield components in field-grown maize (Zea mays L.) were enhanced by nitrogen fertilization ranging from 50 to 200 kg N ha–1. Ear diameter, kernel depth, grain: stover ratio, number of ears plant–1, plant height and dry matter production increased as N fertilization rate was increased up to 100 or 150 kg N ha–1. Tasselling in maize was hastened by N fertilization. Increasing plant density from 25000 to 75000 plants ha–1 increased plant height, dry matter production and delayed tasseling but reduced ear diameter, kernel depth, grain: stover ratio and number of ears plant–1. Increased N supply and plant density had no influence on the concentrations of Mn, Zn, Cu, and Fe in ear leaf; except that Mn concentration increased as N fertilization rate was increased up to 150 kg N ha–1. Nitrogen × plant density interactions on the concentrations of the micronutrients in maize ear leaf were not significant.  相似文献   

7.
Using a scientific assessment concept of sustainability in crop-production based on the entropy production minimization principle of thermodynamics, formation and non-use of soluble and volatile (by-)products of the nutrient cycles within the system are interpreted as indicators or measures of the low efficiency/sustainability of recent forms of intensive agriculture. The simultaneous high energy input in modern crop production systems further shows the difference between these and quasi-stationary natural systems with maximum bioproduction having minimum energy dissipation and entropy production. Using balance sheets and dynamic approaches, the practical implications regarding the nitrogen cycle in central Europe (FR Germany) and China are exemplified and discussed. The average N balance of arable systems in Germany shows surplus N amounts of 110–130 kg N ha-1 yr-1. A high N immobilization in accordance with deepened top soil layers has governed N balances in Germany since about 1960. In China Nbalance surpluses in intensive agricultural (double-cropping) systems on the southern edge of the Loess Plateau now reach 125–230 kg N ha-1 yr-1. In field experiments, mineral N contents in the profiles (0–1.2 m depth) were 72–342 and 78–108 kg ha-1 at harvest of summer maize and winter wheat, respectively. In the Taihu region in eastern China, surpluses in the N balance (rice-wheat double cropping) amount to 217–335 kg N ha-1 yr-1. Nmin contents in the 0–0.9 m profiles of between 50 and 100 kg N ha-1 were frequently found after winter wheat harvest. In two separate investigations of ground and well water samples in China, nitrate contents exceeded the critical WHO value for drinking water in 38–50% of the locations investigated.  相似文献   

8.
Research was conducted at two sites located in medium and low altitude zones in eastern Uganda. The aim of the study was to evaluate the benefit of Velvet bean (Mucuna pruriens) and inorganic N fertilizer in improving maize production in contrasting agro-ecological zones over two seasons. The medium altitude zone (Bulegeni) is a high-potential agricultural zone, with much more reliable rainfall and soils with high-productivity rating. The opposite is true for the low-altitude zone (Kibale). The soils were fertile for the site in the high-potential zone and poor in the low-potential zone. Over 22 weeks of fallow or relay with maize, Mucuna produced on average 8.2 t ha–1 dry matter, accumulating 170 kg N ha–1, with 57% of the N derived from the atmosphere in the low-potential zone, compared to 11.6 t ha–1 dry matter, 350 kg N ha–1, with 43% of the N derived from air, in the high-potential zone. Between 77 and 97% of the Mucuna-accumulated N was released over a period of 25 weeks, at a rate of 0.081 and 0.118 week–1 in the high- and low-potential zones, respectively. The N-balance study shows that 93% of the applied N was accounted for in the high-potential zone, compared to 61% in the low-potential zone, due to differences in soil texture, soil fertility and maize biomass production at the two sites. As much as 44–73% of the N remained in the soil in the high-potential zone, compared to 39–53% in the low-potential zone, which might benefit the subsequent crops. There was a significant increase in maize yield in response to the added N, both from urea or Mucuna. The average increment above the control (continuous maize) was 3.2 t ha–1 in the high-potential zone and 1.0 t ha–1 in the low-potential zone. The maize yield increase over two seasons added up to 3.1 t ha–1 with the application of inorganic fertilizers, and 1.9 t ha–1 with a preceding Mucuna–maize relay in the high-potential zone, compared to an average of, 1.7 t ha–1 with application of inorganic fertilizers and with Mucuna–maize relay in the low-potential zone. Application of P fertilizers with either N supply strategy significantly increased maize yield in the low-potential zone only, resulting in an additional 0.8 t ha–1 for the inorganic N fertilizers and 1.3 t ha–1 for a preceding Mucuna–maize relay. Apparently, P fertilizers are needed on poor soils. Clearly farmers stand to gain in terms of maize production from fertilizers as well as from the use of Mucuna, with more benefits from inorganic fertilizers in the high-potential zone.  相似文献   

9.
Field experiments were carried out during the wet seasons (May to September) of 1980 and 1981 in order to determine the response of five pearl millet cultivars to nitrogen fertilization in savanna region of Nigeria. There were varietal differences in yield and nitrogen uptake in response to nitrogen rates. Most cultivars responded significantly up to 75 kg N ha–1. Hybrid outyielded other cultivars at both locations each year. Nitrogen use efficiency was highest with the Hybrid, compared to other cultivars.  相似文献   

10.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

11.
TheAzolla pinnata (Vietnam) inoculated in rice field 10 days after transplanting (DAT) at a rate of 500 kg ha–1 fresh biomass along with phosphorus fertilizer application produced a mat on the water surface at 30 DAT. The three split application of phosphorus as 4.4, 2.2 and 2.2 kg P ha–1 applied at 10, 15 and 20 DAT, respectively produced 67% more biomass and 57% more Nitrogen inAzolla than those obtained by applying 8.8 kg P ha–1 at 10 DAT. Whereas, the two splits of phosphorus as 6.6 and 2.2 kg and 4.4 and 4.4 kg P ha–1 applied 10 and 15 DAT, respectively produced 20 and 33% more biomass and 14 and 27% more Nitrogen only.The three split application of phosphorus also increased the grain and straw yields, panicle number and weight, nitrogen concentration and its uptake in rice significantly over application of the entire amount once only. An increase of 10% grain yield and 13% straw yields was observed when 8.8 kg P ha–1 was applied in three splits rather than applied at one time. On the average an increase of 24% grain and 23% straw yields in rice were observed due toAzolla intercropping and 22% and 16%, respectively due to phosphorus application. The intercropping ofAzolla with rice along with phosphorus application also increased the fertility level of soil by increasing the total nitrogen, organic carbon and available phosphorus of soil.  相似文献   

12.
A phosphorus (P) fertilization study was conducted in the southeast of the Buenos Aires province in Argentina, to determine the effect of P fertilizer rate and sampling date on microbial biomass P, and of organic and inorganic P extractable with 0.5M NaHCO3, in a soil under pasture. In addition, Bray-P, dry-matter production and P uptake were measured. Soil was sampled at different times over one year, and two to three years after application of 0, 50, 100 and 200 kg P ha –1. The addition of P fertilizer significantly increased total soil P and the labile fraction of P extractable with NaHCO3, with the greatest change in the labile inorganic P form, but had no effect on microbial biomass P. Fractions of P showed different patterns of seasonal variation. Microbial biomass P had a peak in winter and a lowest value in summer, the opposite occurring with NaHCO3-extractable organic P, while NaHCO3-extractable inorganic P remained relatively constant throughout the year. The cumulative dry-matter yield after three years was 31% higher in the fertilized than in the unfertilized treatments; the highest being 27660 kg ha–1 for 200 kg P ha–1. Concentration of Bray-P increased by 0.18 mg P kg –1 for each additional kg P ha–1 added, but remained relatively constant over the year. A significant correlation was found between available Bray-P and microbial biomass P (r = 0.53), and NaHCO3-extractable organic P (r = 0.47), suggesting that these organic fractions may contribute to plant nutrition.  相似文献   

13.
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha–1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha–1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha–1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha–1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.  相似文献   

14.
Field trials were conducted during the 1980–82 seasons to study the response dryland sorghum to nitrogen and phosphorus fertilization in a ferruginous tropical soil. Treatments tested were factorial combinations of three rates of nitrogen (0, 60 and 120 kg N ha–1) and four rates of phosphorus (0, 11, 22 and 33 kg P ha–1). Grain and straw yields and yield components were enhanced by nitrogen fertilization in two out of three years. The optimum N rate for grain yield was 60 kg N ha–1 while straw yield responded up to 120 kg N ha–1. The optimum P rate for dryland sorghum was 11 kg P ha–1. Both N and P enhanced grain weight per head, grain number, test weight and tillering significantly but it was only N which enhanced 1000-grain weight and flag leaf area. Dry matter productin was increased by N fertilization but not by P. There were no significant N × P interactions for any of the parameters studied. Dryland sorghum response to N and P fertilization was influenced by season, time of planting and rainfall distribution.  相似文献   

15.
At very high nitrogen applications (480 and more kg N ha–1 yr–1) in field trials on all-grass swards the amount of N applied exceeded the amount of N harvested. In the humid temperate climate of the Netherlands in the subsequent spring approximately 25, 40, and 50% of this excess nitrogen was recovered as accumulated mineral nitrogen in the 0–100 cm layer of sandy, clay and heavy clay soil, respectively. The effect of this excess nitrogen on growth during the subsequent season was measured through the increase in DM and N yield over a reference treatment. In this season all treatments received a uniform application (40 kg N ha–1 cut–1). Residual effects were absent on sandy soil but distinct on the clay soils. On the clay soils each accumulated kg soil mineral nitrogen produced 15 kg DM. Assuming a relatively small contribution of residual nitrogen carried over in stubble, roots and organic matter, the accumulated soil mineral nitrogen would seem to be as effective as applied fertilizer nitrogen.  相似文献   

16.
Effects of rate and time of nitrogen fertilization on growth, yield and yield components of upland cotton (Gossypium hirsutum L) were studied in two years (1975–76). Four rates of nitrogen application (0, 26, 52 and 78 kg ha–1) timed at 3 or 8 weeks after sowing were compared. Seed cotton yield components increased significantly with increased N application at least up to 52 kg N ha–1, with yield increases between 49% and 73%. Seed cotton yield was influenced by treatments mainly through boll number. Both crop growth rate and fruiting were enhanced by nitrogen fertilization. Applying N at 8 weeks (flowering) favoured yield only slightly over that at 3 weeks (thinning), but improved crop growth and fruiting by about 64% and 24%, respectively. There were significant N rate × time interactions in favour of fertilization at flowering. Applying 52 kg N ha–1 at 8 weeks seems best for cotton in the Nigerian savannah.  相似文献   

17.
Maintenance and sequestration of C is important to sustain and improve the quality and productivity of soils. The objective of this study was to determine the effects of 27 annual applications of six N rates (0, 56, 112, 168, 224 and 336 kg N ha–1 yr–1) on total organic C (TOC) and light fraction organic C (LFOC) in a thin Black Chernozemic loam soil. Nitrogen (ammonium nitrate) was surface-applied to bromegrass (Bromus inermis Leyss) managed as hay near Crossfield, Alberta, Canada. The concentration and mass of TOC and LFOC in the 0–5, 5–10, 10–15 and 15–30 cm soil layers increased with N rate and showed a quadratic response to N rate with significant R2 values, with their maximum values at 336 kg N ha–1 in the 0–5 cm layer and at 224 kg N ha–1 in other layers. But the increase in TOC and LFOC per kg of N addition was maximized at 56 kg N ha–1 and declined with further increase in N rate. These trends indicated that higher N rates would cause a faster build up of soil C, whereas lower N rates would achieve a greater increase in soil C per unit of N addition. Response of C mass to N application was much greater for LFOC (range of 697 to 156% increase) than for TOC (range of 67 to 17% increase). Percentage of LFOC in TOC mass increased with N rate. At the 168 to 336 kg N ha–1 rates, almost all of the increase in TOC in the surface 10 cm soil occurred as LFOC. Thus, LFOC was more responsive to N application and was a good indicator of N effect on soil C. The trend of change in soil TOC and LFOC was similar to hay yield and C removal in hay, which suggests that increasing hay yield with N application concurrently also increases soil organic C. In conclusion, long-term annual applications of N fertilizer to bromegrass resulted in a substantial increase in TOC and LFOC in the soil, thereby indicating that N fertilization can be used to sequester more atmospheric C in prairie grassland soils.  相似文献   

18.
In the research project ARINUS, the effects of restabilization measures (fertilization with readily soluble MgSO4) on the element cycling of Norway spruce ecosystems in the Black Forest (SW Germany) are studied. The objective is to quantify the natural and anthropogenic components of element cycling. Interrelations between the terrestrial and aquatic subsystem are assessed using an integrated approach which combines flux measurements in representative plots with input/output balances of small experimental watersheds. The paper discusses the initial effects of a whole-watershed treatment with Kieserite (750 kg ha–1 MgSO4 · H2O) based on the Mg and S cycling in the control watershed. With the fertilizer, 130 kg ha–1 Mg and 170 kg ha–1 S were introduced into the system. Fertilization resulted in increased levels of Mg and S in the needles. Despite high inorganic Al concentrations and extremely low Ca/Al ratios in soil solution, there was no evidence for Al toxicity. Since fertilizer losses from the system 1 1/2 years (2 growing seasons) after the treatment have been modest, surface water was hardly been affected. More than 75% of the applied Mg has remained in the ecosystem, primarily in the intensively rooted upper soil layer. Also S has been retained to a considerable extent. The mobility of fertilizer sulfate in acidic forest soils is substantially lower than has been hitherto assumed from laboratory experiments. Therefore, fertilization with readily soluble sulfate-based Mg fertilizers is recommended as an efficient and — in comparison to liming — less risky restabilization measure on sites with a high potential for nitrification.  相似文献   

19.
Grain yield, nitrogen (N) assimilation, ammonia (NH3) volatilization, denitrification and fertilizer N distribution were examined in three commercially grown cereal crops; two were sown into conventionally tilled fields, while the third was direct drilled into an untilled field. The crops were top dressed with urea at establishment, tillering or ear initiation. Crop yield and N assimilation were measured in 16 m by 2.5 m plots receiving 0, 35, 70, 105, 140 or 175 kg N ha–1. A mass balance micrometeorological technique was used to measure NH3 volatilization, and other fertilizer N transformations and transfers were studied using15N labelled urea in microplots.On the conventionally tilled sites application of urea increased the grain yield of wheat from 3.9 to 5.5 t ha–1, when averaged over the five application rates, three application times and two sites. There were no site or application time effects. However, on the direct drilled site, time of application had a significant effect on grain yield. When urea was applied at establishment, grain yield was not significantly increased and the mean yield (2.81 t ha–1) was less than that obtained from treatments fertilized at tillering or ear initiation (4.09 and 4.0 t ha–1, respectively). Much of the variation in grain yield at the no-till site could be ascribed to differences in NH3 volatilization. At the no-till site, NH3 losses were equivalent to 24, 12 and 1% of the N applied at establishment, tillering and ear initiation, respectively. Negligible volatilization of NH3 occurred at the other sites. The surface soil at the no-till site had the highest urease activity and the soil was covered with alkaline ash resulting from stubble burning.Plant recovery of fertilizer N did not vary with application time on conventionally tilled sites (mean 62%). However, plant recovery of15N applied to the no-till site at establishment (35% of the applied N) was significantly less than that from plots where the application was delayed (45% at tillering and 55% at ear initiation, respectively). Leaching of N to below 300 mm depth was minimal (0 to 5% of the applied N). The calculated denitrification losses ranged from 1% to 14% of the applied N.The results show that the relative importance of NH3 volatilization, leaching and denitrification varied with site and fertilization time. The importance of the various N loss mechanisms needs to be taken into account when N fertilization strategies are being developed.  相似文献   

20.
In the previous paper, we reported the stand growth of slash pine (Pinus elliottii) during the first 11.5 years of plantation in response to (1) initial fertilization at plantation establishment with P rates of 11, 22, 45 and 90 kg P ha–1 which were either banded or broadcast in the presence or absence of basal fertilizers containing 50 kg N ha–1, 50 kg K ha–1 and 5 kg Cu ha–1 and (2) application of additional 40 kg P ha–1 at age 10 years. Here we present the responses in foliar nutrient concentrations of slash pine in the first 11.5 years to the initial fertilization and the additional P applied at age 10 years.Foliar N and K concentrations in the first 9.6 years of plantation decreased with the initial P rate. Application of the basal fertilizers improved foliar Cu concentration. Foliar Ca and Mg concentrations increased linearly with the initial P rate. The initial fertilization did not affect foliar Mn concentration in the first 9.6 years. Foliar P concentration increased quadratically with the initial P rate, which accounted for 77–86% of the variation in foliar P concentration. Most of the explained variation in foliar nutrient concentrations was attributable to the plantation age except for foliar P concentration. In the case of foliar P concentration, 53% was explained by the initial P rate, 31% by the plantation age and 2% by the positive interaction between the initial P rate and the plantation age. Foliar P concentration of slash pine at age 11.5 years increased quadratically with the initial P rate and linearly with the additional 40 kg P ha–1 applied at age 10 years, accounting for 81% of the variation in the foliar P concentration. Foliar nutrient analysis indicated that P was the major limiting nutrient affecting the stand growth of slash pine in the first 11.5 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号