首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the effect of ZrO2 particles on corrosion behaviour of Cr coating, steel samples were plated in Cr(VI) baths without and with ZrO2. The corrosion behaviour of plated samples was studied at different exposure times in a solution containing 0.01 mol l−1 H2SO4 + 0.5 mol l−1 Na2SO4 using cyclic voltammetry and impedance spectroscopy. The equivalent circuit model Re(QcRpore)(Qs[ORs]) was proposed to fit the corrosion process and the parameters Y0(Qc),Y0(Qs) and Rpore reflecting corrosion behaviour of samples were evaluated. From the results, it was found that samples plated in bath containing ZrO2 exhibited improved protective properties as a result of the structural characteristics of the coatings obtained; namely, the size and shape of pores.  相似文献   

2.
Investigation of the electrochemical behaviour of Cu-10Sn (wt.%) alloy has been conducted in aerated aqueous chloride solutions and compared to that of pure Cu and Sn. Cathodic and anodic bronze behaviours have been investigated in function of the chloride concentrations (0.1-0.001 M), the rotation speed of the electrode and the potential sweep rate after 1-h immersion time in open-circuit conditions. At the corrosion potential, the corrosion behaviour appears determined by the charge-transfer controlled reduction of oxygen and the mixed charge- and mass-transfer controlled electrodissolution. In 0.1 M NaCl solution, three anodic regions are evidenced corresponding to: (I) a dissolution part from Eoc value, (II) a maximum current region corresponding to peaks formation and (III) a large current plateau. A partial protective effect of the corrosion product layer is observed at high anodic potential. It has been interpreted as the result of a 3D growth mechanism involving the formation of stable tin species in the layer according to a “pore resistance model”. Results on synthetic alloy are compared with those obtained on an archaeological bronze with a similar composition immersed in the same medium. Equivalent interface behaviour is evidenced between the synthetic and the archaeological bronzes.  相似文献   

3.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

4.
The electrochemical behaviour of Ni-base alloys (Inconel 625, Inconel 718, G3 and Incoloy 825) is carried out at 80 °C in CO2/H2S corrosion environments using cyclic potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. The passivity mechanisms are analysed and discussed. In addition, some significant characterisation parameters such as Ecorr, Ipass, Epit, Epp, ΔE and Ipass in cyclic polarisation curves are analysed and compared to reveal the corrosion resistance of various Ni-base alloys. The equivalent circuit model and ZsimpWin software are utilised to discuss the Nyquist plots of various Ni-base alloys. The diffusion mechanism in EIS measurement is discussed. The result shows that the corrosion resistance of the Ni-base alloys to CO2 corrosion or CO2/H2S corrosion follows the sequence: Inconel 625 > G3 > Inconel 718 > Incoloy 825. H2S works as a cathodic depolariser with accelerating initiation of the corrosion process.  相似文献   

5.
The corrosion resistance of an electroplated (EP) Zn coating whose surface was chemically etched to produce surface defects (pores) is investigated in this work. Impedance and DC polarisation measurements were employed to study the behaviour of such coating in various corrosive media (NaCl, NaOH and rain water). Four different faradaic relaxation processes were clearly revealed in different NaCl concentrations (from 0.1 to 1 M). In the most concentrated solutions at least three relaxation processes at low frequencies (LF) appeared and were related to zinc deposition and dissolution. At lower concentrations and depending on the pH, only one process was observed. The charge transfer resistance (Rct) and the corrosion current (Icorr) were practically stable in the pH range 5-10. In deaerated NaCl 0.1 M, the EIS diagrams showed two time constants at very close frequencies. From the EIS diagrams the porous nature of the coating was highlighted and showed that the dissolution mechanisms occurred at the base of the pores.  相似文献   

6.
The corrosion behaviour of zinc deposits obtained under pulsed current electrodeposition from an acidic chloride bath in the presence and absence of coumarin has been investigated. The effects of pulse peak current density (Jp) on the morphology of zinc deposits were studied by scanning electron microscopy. An increase in Jp from 40 to 280 A dm−2 yields deposits with a finer grain size. The refinement of the grain size was more considerable in the presence of coumarin (Jp = 280 A dm−2). The preferred orientation of zinc deposits was studied by X-ray diffraction. At Jp = 40 A dm−2, the preferred orientation of zinc deposits was (1 0 3) and changed to (0 0 2) at Jp = 80 A dm−2. An increase in Jp to 280 A dm−2 did not change the preferred crystallographic orientations except for an increase in the peak intensity of the (0 0 2) plane. In the presence of coumarin, the preferred crystallographic orientations changed at Jp = 280 A dm−2 from the (0 0 2) plane to the (1 0 3) plane. The corrosion behaviour was investigated in an aerated 3.5% NaCl solution; the anodic polarization and electrochemical impedance spectroscopy curves were performed. The corrosion resistance of zinc deposits was improved by increasing the pulse peak current density (Jp); whereas, the presence of coumarin did not improve the corrosion resistance.  相似文献   

7.
The corrosion behaviour of silicon-carbide-particle (SiCp) reinforced AZ92 magnesium alloy manufactured by a powder metallurgy process was evaluated in 3.5 wt.% NaCl solution, neutral salt fog (ASTM B 117) and high relative humidity (98% RH, 50 °C) environments. The findings revealed severe corrosion of AZ92/SiC/0-10p materials in salt fog environment with formation of corrosion products consisting of Mg(OH)2 and (Mg,Al)x(OH)y. The addition of SiCp increased the corrosion rate and promoted cracking and spalling of the corrosion layer for increasing exposure times. Composite materials revealed higher corrosion resistance in high humidity atmosphere with almost no influence of SiCp on the corrosion behaviour.  相似文献   

8.
A systematic study of the isothermal corrosion testing and microscopic examination of Fe3Al alloy in liquid zinc containing small amounts of aluminum (less than 0.2 wt.%) at 450 °C was carried out in this work. The results showed the corrosion of Fe3Al alloy in molten zinc was controlled by the dissolution mechanism. The alloy exhibited a regular corrosion layer, constituted of small metallic particles (diameter: 2-5 μm) separated by channels filled with liquid zinc, which represented a porosity of about 29%. The XRD result of the corrosion layer formed at the interface confirmed the presence of Zn and FeZn6.67. The corrosion rate of Fe3Al alloy in molten zinc was calculated to be approximately 1.5 × 10−7 g cm−2 s−1. Three steps could occur in the whole process: the superficial dissolution of metallic Cr in the corrosion layer, the new phase formation of FeZn6.67 and the diffusion of the dissolved species in the channels of the corrosion layer.  相似文献   

9.
Zr-based metallic glasses passivate spontaneously, but exhibit also a certain pitting susceptibility. On the example of the Zr59Ti3Cu20Al10Ni8 alloy studied in 0.01 M Na2SO4 + x M NaCl (x = 0-0.1) electrolytes it is demonstrated that the surface finishing state and the pre-exposure conditions can significantly influence the free corrosion and anodic polarisation behaviour. Mechanical fine-polishing procedures can lead to extremely smooth topographies but also to Cu enrichment at the surface. This yields a pronounced Cu dissolution at low anodic polarisation prior to stable passivity and increases the pitting initiation susceptibility as compared to mechanically ground surface states.  相似文献   

10.
The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (Epit) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 °C and 520 °C. Under such experimental conditions the Epit-values shifted up to 1.25 V in the positive direction.  相似文献   

11.
The influence of cerium ions in the dissolution mechanism of zinc has been evaluated by means of electrochemical impedance spectroscopy in a sodium chloride media. The multi-step dissolution process of zinc is modified during the early stages of immersion. The initial chloride ions adsorption on the surface is hindered by the adsorption of cerium ions which act as a precursor of the rich cerium layer formed with time. This was revealed by the appearance of two constant times at high and intermediate frequencies related to the charge transfer resistance and the adsorption process. At longer times, 24 h, the second arc evolves toward a diffusion tail. As time increases the behaviour of the galvanised steel depends on the Ce concentration. For 500 and 1000 ppm CeCl3 · 7H2O there was no evidence of the constant time associated to the porous corrosion products of zinc at the high frequency range.  相似文献   

12.
The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.  相似文献   

13.
The electrochemical behavior of copper (Cu), iron (Fe) and Cu-20%Fe alloy was investigated in 1.0 M sodium chloride solution of pH 2. The effect of thiourea (TU) addition on the corrosion rate of the Cu-20%Fe electrode was also studied. Open-circuit potential measurements (OCP), polarization and electrochemical impedance spectroscopy (EIS) were used. The results showed that the corrosion rates of the three electrodes follow the sequence: Cu < Cu-20%Fe < Fe. Potentiostatic polarization of the Cu-20%Fe electrode in the range −0.70 V to −0.45 V (SCE), showed that iron dissolves selectively from the Cu-20%Fe electrode surface and the rate of the selective dissolution reaction depends on the applied potential. At anodic potential of −0.45 V, thiourea molecules adsorb at the alloy surface according to the Langmuir adsorption isotherm. Increasing thiourea concentration (up to 5 mM), decreases the selective dissolution reaction and the inhibition efficiency η reach 91%. At [TU] > 5 mM, the dissolution rate of the Cu-20%Fe electrode increases due to formation of soluble thiourea complexes. At cathodic (−0.6 V), the inhibition efficiency of thiourea decreases markedly owing to a decrease of the rate of the selective dissolution reaction and/or desorption of thiourea molecules. The results indicated that thiourea acts mainly as inhibitor of the selective dissolution reaction of the Cu-20%Fe electrode in chloride solution.  相似文献   

14.
The effects of nitrogen ion implantation on corrosion behaviour of 304L stainless steel in 1 N HNO3 medium were investigated using surface analytical and electrochemical techniques. Nitrogen ion was implanted at 70 keV in the dose range of 1 × 1015, 1 × 1016, 1 × 1017 and 2.5 × 1017 N+/cm2, respectively. Grazing incidence X-ray diffraction results for unimplanted and up to dose of 1 × 1016 N+/cm2 showed co-existence of γ-Fe and α′-Fe and, at higher doses (1 × 1017 and 2.5 × 1017) preferential formation of chromium nitride was observed. X-ray photoelectron spectroscopy investigation confirmed the formation of chromium nitride at higher doses. Electrochemical corrosion investigation revealed nobler open circuit potential, decrease in corrosion current densities, passive current densities and increase in polarization resistance with increase in dose rate. Surface morphology analysis after polarization study using atomic force microscope showed grain boundary dissolution for unimplanted specimens and resistance to surface dissolution with increase in dose rate for implanted specimens.  相似文献   

15.
The research explored ways of improving corrosion behaviour of AZ91D magnesium alloy through heat treatment for degradable biocompatible implant application. Corrosion resistance of heat-treated samples is studied in simulated body fluid at 37 °C using immersion and electrochemical testing. Heat treatment significantly affected microgalvanic corrosion behaviour between cathodic β-Mg17Al12 phase and anodic α-Mg matrix. In T4 microstructure, dissolution of the β-Mg17Al12 phase decreased the cathode-to-anode area ratio, leading to accelerated corrosion of α-Mg matrix. Fine β-Mg17Al12 precipitates in T6 microstructure facilitated intergranular corrosion and pitting, but the rate of corrosion was less than those of as-cast and T4 microstructures.  相似文献   

16.
A mathematical model is presented for simulation of changes in the pore solution phase chemistry of carbonated hardened cement paste when aqueous solutions of organic base corrosion inhibitors are applied to the surface of the material and constant current densities in the range of 1-5 A/m2 are passed between anodes placed within the inhibitor solutions and steel mesh cathodes embedded within the paste. The model, based on the Nernst-Planck equation, is used to predict the concentration profiles of electrochemically injected inhibitors and the major ionic species present within the pore electrolyte. For two specific organic base inhibitors with widely different pKa values, viz. ethanolamine (pKa 9.5) and guanidine (pKa 13.6), the model predictions are compared with experimental results described in Part 1 of the investigations.  相似文献   

17.
Sa Li 《Corrosion Science》2010,52(10):3568-3572
To better understand the hot corrosion behaviour of Yb2Zr2O7 ceramic in molten V2O5, hot corrosion experiments were performed in a temperature range of 600-800 °C in air. Different reaction products of ZrV2O7, YbVO4 and m-ZrO2 were identified depending upon the hot corrosion conditions, for example, ZrV2O7 and YbVO4 at 600 °C for 2 h and 8 h; ZrV2O7, m-ZrO2 and YbVO4 at 700 °C for 2 h; m-ZrO2 and YbVO4 either at 800 °C for 2 h or at 700-800 °C for 8 h. The hot corrosion reaction mechanisms were further discussed based on the thermal instability of ZrV2O7 at elevated temperatures.  相似文献   

18.
Corrosion of carbon steel in un-buffered NaCl solutions was studied applying linear potential sweep technique to a rotating disk electrode. Current-potential curves were obtained from linear potential sweep at a rate of 1 mV s−1 in solution with concentrations in the range 0.02-1 M NaCl and rotation rates in the range 170-370 rad s−1, at 22 °C. Potential sweeps, which were conducted in the potential range −700 to −100 mV/SHE, were started from the cathodic limit in order to approach the measurement of corrosion under rust-free conditions. Polarization curves were analyzed with a superimposition model developed ad hoc and implemented in a computer program, which enabled determining the corrosion rate and kinetics parameters of the underlying anodic and cathodic sub-processes. The anodic sub-process, dissolution of iron, was well described in terms of a pure charge transfer controlled reaction, while the cathodic sub-process, oxygen reduction on iron, was well described in terms of mixed mass transfer and charge transfer control. Increase of electrode rotation rate increases the limiting current of oxygen reduction, which results in an enhanced corrosion rate of carbon steel. Increase of NaCl concentration has a dual effect: the limiting current of oxygen reduction decreases as a result of the influence of NaCl concentration on solution viscosity and the anodic dissolution of iron increases due to the influence of NaCl on pitting formation. However, this last mechanism predominates and a net increase in carbon steel corrosion rate is observed in this case.  相似文献   

19.
Pulse electrodeposition was used to synthesize nanocrystalline (NC) zinc coatings from citric acid bath. The electrochemical behaviour of the NC zinc coatings was investigated by using potentiostatic and potentiodynamic polarization methods in 0.5 mol/L NaCl (pH = 12) solution and compared with that of cast zinc. Pitting corrosion behaviour was characterized by pitting potential, induction time and stable pit growth rate which were analyzed according to statistical method. The results showed that nanocrystallization increased the sensitivity of Epit refer to potential sweep velocity, changed the type of the pit generation from B1 (parallel) to B2 (series), accelerated the pitting initiation process and inhibited the stable pit growth process of NC zinc.  相似文献   

20.
In situ synchrotron X-ray diffraction was used to follow the formation of corrosion product scales on carbon steel in CO2 saturated brine at temperatures from 40 to 90 °C. The corrosion process was accelerated by applying a small anodic current, and in selected tests a scale inhibitor, amino trimethylene phosphonic acid (ATMPA), was added. Siderite was identified as the major phase in the scale formed in all conditions. With increasing temperature, the scale formation rate increased, while the scale thickness and crystallite size decreased. Above 60 °C, the scale became increasingly protective. The scale thickness and crystallite size decreased with increasing ATMPA concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号