首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary Fe-Cr alloys were subjected to cyclic oxidation at 600, 700 and 950 °C in flowing gases of Ar-20O2 and Ar-20O2-5H2O (vol.%). The minimum chromium concentration required to achieve protective scale growth decreased as temperature increased from 600 to 700 °C. This change is attributed to faster chromium diffusion at higher temperature. Conversely, this minimum chromium level increased when the temperature was raised from 700 to 950 °C. This is attributed to faster scale growth, leading to its rapid mechanical failure, along with formation of slow-diffusing austenite. Water vapour accelerated scaling, leading to a need for higher chromium concentrations to resist breakaway oxidation.  相似文献   

2.
M Paljevi?  M Tudja 《Corrosion Science》2004,46(8):2055-2065
The high-temperature oxidation of the Zr-3 mass% Cu alloy and Zr2Cu in oxygen is characterized by selective oxidation of zirconium while the excess of copper is accumulated at the alloy-oxide interface forming the Zr8Cu5 phase. The oxidation of Zr2Cu at elevated temperatures shows an anomalous decrease of the oxygen consumption rate in the temperature range 890-975 °C. The oxide layer consists of monoclinic ZrO2 mainly, with preferentially oriented crystallites in depth region at 900 °C and tetragonal ZrO2 on the surface below 600 °C, and small amounts of CuO and Cu2O. The reaction kinetics obeys a parabolic rate law. The activation energy of 117.5 and 54.4 kJ/mol has been estimated for the oxidation of the Zr-3 mass% Cu alloy and Zr2Cu, respectively.  相似文献   

3.
The growth behaviour of plasma electrolytic oxidation (PEO) coating on Ti6Al4V was studied by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test, focusing on effects of the electrolyte additive - calcium hypophosphite. The EIS analysis of the outer layer of the PEO coating provided insight into the structure of the coating, which was confirmed by SEM results. The EIS analysis of the inner layer of the PEO coating provided information matching well with the results of the potentiodynamic polarization test.  相似文献   

4.
Ni-base wrought alloy HASTELLOY X tube was exposed to Ar–CH4 at 800 and 1000 °C in order to understand the carburization kinetics of the alloy used for fuel injection nozzles of micro-gas turbine combustors. Three different internal carbides, (Cr,Mo)3C2, (Cr,Mo)7C3 and (Cr,Mo)23C6 were observed in this order from the surface, and the partial damage to the outer surface of the specimen tube appeared similar to metal-dusting. The internal carburization kinetics on both the inner and outer parts of tube followed the parabolic rate law. The carbon permeability in HASTELLOY X was obtained, and was slightly smaller than that of Ni–20%Cr.  相似文献   

5.
The hydrogen absorption behaviour during acid etching for the surface modification of commercial pure Ti, Ti-6Al-4V and Ni-Ti superelastic alloys has been investigated on the basis of the surface morphology, electrochemical behaviour and hydrogen thermal desorption analysis. To simulate the conventional acid etching for the improvement of the biocompatibility of Ti alloys, the specimens are immersed in 1 M HCl, 1 M H2SO4 or 0.5 M HCl + 0.5 M H2SO4 aqueous solution at 60 °C. Upon immersion, commercial pure Ti absorbs substantial amounts of hydrogen irrespective of the type of solution. In H2SO4 or HCl + H2SO4 solutions, the hydrogen absorption occurs for a short time (10 min). For Ti-6Al-4V alloy, no hydrogen absorption is observed in HCl solution, whereas hydrogen absorption occurs in other solutions. For Ni-Ti superelastic alloy, the amount of absorbed hydrogen is large, resulting in the pronounced degradation of the mechanical properties of the alloy even for an immersion time of 10 min, irrespective of the type of solution. The hydrogen absorption behaviour is not necessarily consistent with the morphologies of the surface subjected to corrosion and the shift of the corrosion potential. The hydrogen thermal desorption behaviour of commercial pure Ti and Ni-Ti superelastic alloy are sensitively changed by acid etching conditions. The present results suggest that the evaluation of hydrogen absorption is needed for each condition of acid etching, and that the conventional acid etching often leads to hydrogen embrittlement.  相似文献   

6.
A crack-free Al diffusion coating has been developed to improve the oxidation resistance of Ti22Al26Nb. It was produced by a two-step method; an Al film was deposited on the substrate alloy by arc ion plating followed by a diffusion process conducted at 873 K in pure Ar to form the Al diffusion coating. The two-step method lowers the temperature required to form the diffusion coating, which dramatically decreases the thermal stress developed in the coating and results in it being crack-free. The oxidation resistance of the non-coated Ti22Al26Nb alloy in isothermal and cyclic tests in air at 1073 K was poor, but the coated specimens possessed excellent oxidation resistance because a protective α-Al2O3 scale formed. The life of the Al diffusion coating greatly depends upon the rapid initial formation of a protective Al2O3 scale and interdiffusion between coating and substrate. Once the stable Al2O3 scale has formed and the composition changes from (Ti, Nb)Al3 into (Ti, Nb)Al2, the coating has a long life.  相似文献   

7.
The effect of annealing on the corrosion behaviour of the ultrafine-grained pure titanium (Ti) produced by high-ratio differential speed rolling was examined in a 0.5 M H2SO4 solution using potentiodynamic polarisation and weight loss methods. The results indicated that post-rolling annealing significantly affected the corrosion resistance of ultrafine-grained Ti. It was concluded that annealing treatments leading to a decrease in dislocation density and residual stress while maintaining an ultrafine grain size and strong basal texture can allow for the development of pure Ti with a good combination of high strength and high corrosion resistance.  相似文献   

8.
Plasma electrolytic oxidation (PEO) was studied using electrochemical impedance spectroscopy (EIS) and transient waveform analysis. First, EIS measurements on coatings prepared under constant current density were conducted in the working electrolyte. The EIS analysis showed that the coating structure changed with the termination voltage. Second, the pulse waveform of the power supply was recorded during the PEO process. It showed that a charging process occurred across the breakdown coating at the beginning of the pulse. The present study analysed this charging process in detail.  相似文献   

9.
S. Helle  B. Assouli  D. Guay 《Corrosion Science》2010,52(10):3348-3355
CuxNi85−xFe15 (0 ? x ? 85 wt.%) compounds were prepared by mechanical alloying. Monophased face centered cubic (fcc) Cu-Ni-Fe alloys were obtained after 10 h of milling for x varying from 0 to 50, whereas bi-phased compounds fcc Cu-Ni-Fe + body centered cubic (bcc) Fe were formed with richer-Cu compounds. Their oxidation kinetics in air at 750 °C is parabolic for all compositions and increases drastically for x > ∼30. A stable anode for aluminium electrolysis in low-temperature (700 °C) KF-AlF3 electrolyte was obtained for 65 ? x ? 85. However, a substantial increase of the Cu contamination in produced aluminium was observed for x > 70.  相似文献   

10.
Characteristics of the oxide films formed on 304 stainless steel exposed to 290 °C oxygenated water in a nickel-lined autoclave were examined. The oxides evolve from dominating irregularly shaped hematite to faceted spinels with increasing immersion time. The surface layer of oxide film is first Cr-enriched and then Ni-enriched as immersion time increases. The oxides nucleate by solid-state reactions with selective dissolution of Fe and Ni, and then grow up through precipitation of cations from solution. Nickel ions dissolved from the nickel lining could promote the stability of NiFe2O4 spinel and influence the oxidation behaviour of 304 stainless steel significantly.  相似文献   

11.
The effect of grain size and texture on the corrosion properties of commercially pure titanium was investigated. Equal channel angular pressing (ECAP) was used to produce different grain size and various crystallographic orientations. Electrochemical impedance spectroscopy was employed to measure the corresponding surfaces’ general corrosion resistance. Samples with the (0 0 0 2) planes parallel to the surface were found to offer the highest corrosion resistance, regardless of their grain size.  相似文献   

12.
A ternary Al–Mg–Si alloy was prepared by co-evaporation technique and tested with respect to hydrogen entry behaviour as an alternative to conventional zinc coating on steel. Hydrogen entry behaviour evaluated using Devanathan cell showed a smaller hydrogen entry for this new coating than conventional zinc coating. Compared to an unscratched surface, hydrogen entry increased by more than 100 times in the scratched surface, but it was lower than that for the zinc coating with a scratched surface owing to the moderate galvanic corrosion potential of the new coating. This new coating is proposed especially for high-strength steel application.  相似文献   

13.
An attempt was made to understand the effect of silicate based plasma electrolytic oxidation (PEO) coating on the stress corrosion cracking (SCC) behaviour of an AZ61 wrought magnesium alloy. The SCC behaviour of untreated and PEO coated specimens was assessed using slow strain rate tensile tests at two different nominal strain rates, viz. 1 × 10−6 s−1 and 1 × 10−7 s−1, in ASTM D1384 test solution at ambient conditions. The PEO coating was found to improve the general corrosion resistance to a significant extent; however, the improvement in the resistance to stress corrosion cracking was only marginal.  相似文献   

14.
Even though magnesium, as a structure metal, is most commonly used in an atmospheric environment, most investigations of magnesium are performed in solution. In the present work the atmospheric corrosion of two commonly used magnesium alloys, AZ91D and AM50, has been investigated from the initial stages up to the most severe forms of corrosion. A detailed investigation of the morphology of a corrosion attack and its development over time shows that the atmospheric corrosion mechanism is similar for the two alloys. Based on these findings a schematic model of the initial atmospheric corrosion attack on AZ91D is presented and discussed.  相似文献   

15.
A method for the fabrication of titanium alloy parts with enhanced corrosion resistance by a powder metallurgy route is presented in this paper. Commercial purity titanium powders modified with Pd have been hot isostatically pressed (HIPped) and the microstructure and distribution of the noble metal characterised by optical and scanning electron microscopy. The electrochemistry of the HIPped alloy has been assessed and the effect of powder size fraction evaluated. Results show that the phase composition and electrochemistry of the HIPped Pd-modified alloy is equivalent to that of wrought grade 7 Ti.  相似文献   

16.
The resistance of both AISI 316L stainless steel (AISI 316L SS) and commercially pure titanium (cpTi) to localized corrosion in a simulated body fluid solution was investigated using numerical simulations. The resulting model, based on transport equations in dilute solutions, is designed to predict the susceptibility of these two biomaterials to crevice corrosion initiation. The results show that cpTi and AISI 316L SS alloy are very resistant to the initiation of crevice corrosion in 0.9% NaCl solution and AISI 316L SS alloy is more susceptible to corrosion initiation over the long term than cpTi.  相似文献   

17.
On the high-temperature oxidation of nickel   总被引:2,自引:0,他引:2  
This paper summarizes on some of the extensive experimental data and corresponding models suggested to account for the oxidation mechanism of Ni in the temperature range 500-1400 °C. In addition it reports on in-house experimental data from investigations related to the oxidation of high-purity Ni from 500 to 1300 °C in the oxygen pressure range 1×10−4-1 atm based on TG, measurements of surface kinetics, two-stage oxidation, scanning electron microscopy, atomic force microscopy, secondary ion mass spectroscopy etc. The main part of this paper focuses on the more complex models suggested to account for experimental observations of the oxidation kinetics and the oxide morphology below 1000 °C.  相似文献   

18.
Fe9Cr, Fe17Cr and Fe25Cr alloys were subjected to isothermal oxidation in Ar/O2 and Ar/H2 atmosphere at 700 °C as high temperature corrosion for 48 h. Oxidation weight change measurement showed increasing Cr content reduced the oxidation rate. The oxidized Cr alloys were analysed using SEM, TEM and XRD. The addition of water vapour accelerates the onset of breakaway oxidation kinetics for Fe9Cr. The presence of water vapour promotes internal oxidation of Cr within Fe9Cr. For Fe17Cr and Fe25Cr, the water vapour effect is not significant due to the large Cr reservoir due to continue growth of Cr2O3.  相似文献   

19.
The corrosion behaviour of AZ92 magnesium alloy reinforced with various volume fractions of silicon carbide particles (SiCp) and treated by alternating current (AC) plasma electrolytic oxidation (PEO) was investigated in humid and saline environments. For untreated composites, corrosion attack started around the Al-Mn inclusions and gradually developed into general corrosion without significant galvanic coupling between the matrix and the SiCp. PEO coatings consisted mainly of MgO and Mg2SiO4, and revealed increased hardness, reduced thickness and slightly higher corrosion resistance with increasing proportion of reinforcement. Pit formation and hydration of the outer layer were the main mechanisms of corrosion of PEO-treated specimens.  相似文献   

20.
The corrosion behavior at high-temperature and the aqueous corrosion behavior of sintered stainless steels manufactured from non-commercial prealloyed powder (434L with 2% Si) are studied and their results are compared with those of sintered stainless steels manufactured from commercial 434L powder, that has lower Si content. Both types of powders have been sintered in vacuum at three different temperatures, so materials with different porosity levels have been obtained. Several oxidation tests have been carried out from 700 to 1000 °C. Long-term experiments have proven the better oxidation resistance of 434L + 2% Si steels. Electrochemical measurements of the corrosion rate show a decrease on this parameter caused by the increase of Si-content on powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号