首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High strength steels used in prestressing concrete structures are not exempt from the effects induced by corrosion on the normal concrete reinforcement. Carbonation of surrounding concrete or mortar is not unlikely for prestressing tendons and strands. Moreover, these steels undergo to brittle fracture as a consequence of stress corrosion cracking phenomena. To evaluate if concrete carbonation can promote this kind of failure, constant load tests in bicarbonate aqueous solutions under anodic polarization were carried out on high strength steel wires. Microscopic examination pointed out that the wires exhibited a brittle fracture mode, while its natural feature is ductile, as indicated by air testing. Failure mechanism was evaluated by a fracture mechanic approach. Cracks initiation was attributed to an anodic dissolution mechanism, while its propagation, interpreted by means of the surface mobility theory, was related to interaction between hydrogen atoms and magnetite at a crack tip.  相似文献   

2.
This paper analyses the hydrogen assisted cracking (HAC) behaviour of cold drawn prestressing steels with different degrees of cold drawing. The experimental results showed a progressively anisotropic behaviour as the degree of cold drawing increases, with an evolution in the fracture behaviour from mode I (isotropic behaviour in slightly drawn steels) to mixed mode propagation (strongly anisotropic behaviour in heavily drawn steels). The fractographic analysis revealed changes in the microscopic topography depending on the fracture propagation mode, with evolution from pure tearing topography surface (TTS) in slightly drawn steels to a kind of very deformed TTS in heavily drawn steels.  相似文献   

3.
This paper deals with the analysis of the acoustic emission (AE) signals to determine the micro-process during stress corrosion cracking (SCC) of AISI type 316LN stainless steel that cause the AE, and thus the mechanism of the SCC process. AE with amplitudes ranging from 27.6 to 46.5 dB with different counts, energy and rise times occurred during SCC of type 316LN stainless steel in 45% MgCl2 at 413 K. The analysis of the AE signals in conjunction with fractography indicated that a surge in the AE counts and energy indicated initiation of SCC. AE was found to be continuous prior to the initiation. The time gap between AE events increased during initiation. AE events occurred in bursts during crack growth. Plastic deformation ahead of the crack tip was determined to be the major source of AE during propagation of SCC in type 316LN stainless steel. The cracking was found to initiate and propagate in the transgranular mode.  相似文献   

4.
This paper evaluates the anisotropic stress corrosion cracking behaviour of high-strength prestressing steel wires. To this end, two eutectoid steels in the form of hot rolled bar and cold drawn wire were subjected to stress corrosion cracking tests in aqueous environments using a constant strain technique and precracked three point bend specimens to measure the crack growth rate da/dt as a function of the stress intensity factor KI under hydrogen embrittlement environmental conditions (pH = 12.5 E = − 1200 mV SCE). While the hot rolled bar presents an isotropic stress corrosion cracking behaviour associated with mode I crack growth, the cold drawn wire exhibits a change in crack propagation direction approaching that of the wire axis (cold drawing direction) and producing mixed mode crack growth. This anisotropic stress corrosion cracking behaviour is a consequence of manufacturing, since cold drawing affects the microstructure of the material and produces a preferential orientation of the pearlite lamellae aligned parallel to the wire axis. The differences of crack growth rate as a function of the crack propagation direction are discussed.  相似文献   

5.
Monophasic and multiphasic (two and three phases) sintered stainless steels were prepared both considering premixes of AISI 316LHC and AISI 434LHC stainless steels powders and using a prealloyed duplex stainless steel 25% Cr, 5% Ni, 2% Mo powder. Their fatigue crack propagation resistance was investigated both in air and under hydrogen charging conditions (0.5 M H2SO4 + 0.01 M KSCN aqueous solution; applied potential = −700 mV/SCE), considering three different stress ratios (R = 0.1; 0.5; 0.75). Fatigue crack propagation micromechanisms were investigated by means of fracture surface scanning electron microscope (SEM) analysis.For all the investigated sintered stainless, fatigue crack propagation resistance is influenced by hydrogen charging and an increase of crack growth rates dependent on the steel microstructure is obtained. Experimental results also allow to identify the sintered stainless steel obtained from the prealloyed 25% Cr, 5% Ni, 2% Mo powder as the most resistant to fatigue crack propagation in air and under hydrogen charging conditions.  相似文献   

6.
目的研究不同外加电位下,X80管线钢在近中性p H溶液环境中的裂纹扩展行为。方法对X80管线钢紧凑拉伸试样进行近中性p H溶液环境中的循环加载试验,利用拍摄装置记录不同循环次数下的裂纹长度,并利用扫描电镜(SEM)观察裂纹扩展面上的微观形貌。研究不同外加电位下,X80钢在近中性p H溶液环境中的裂纹扩展速率,分析其裂纹扩展规律。结果在开路条件下,循环加载755次时,裂纹扩展4.6 mm后失稳断裂;在外加电位为-775 m V(vs.SCE)的条件下,循环加载671次时,裂纹扩展3.677 mm后失稳断裂;在外加电位为-1125 m V(vs.SCE)的条件下,循环加载625次时,裂纹扩展3.882 mm后失稳断裂。结论在开路电位和弱阴极电位下,裂纹扩展受到阳极溶解机制和氢脆机制的混合控制,以阳极溶解机制为主,裂纹扩展速率均较低;随着外加电位降低,裂纹扩展机制逐渐过渡为主要受氢致开裂作用控制,裂纹扩展速率显著增加。  相似文献   

7.
Acoustic emission (AE) behaviour during the electrochemical corrosion of 304 stainless steel (304SS) in H2SO4 solutions was studied. AE signals which related to transpassive dissolution are detected in solutions with low pH, and are very slightly influenced by current density and pre-strain. During hydrogen bubble evolution, a weak correlation exists between the AE signal amplitude and the hydrogen bubble diameter. The concept of potential – pH – AE diagram is proposed and such a diagram is drawn based on AE activity and b-values. The main mechanisms of AE sources which are transpassive dissolution and hydrogen bubble evolution, are also discussed.  相似文献   

8.
超低碳贝氏体钢焊接热影响区研究   总被引:7,自引:2,他引:7       下载免费PDF全文
用Gleeble-1500热模拟机研究了超低碳贝氏体(ULCB)钢,在不同焊接模拟热循环条件下HAZ的组织与性能。结果表明,适量铌,硼合金化的ULCB钢在不同焊接条件下都能获得具有良好冲击韧性的贝氏体组织。但焊接工艺的不同也直接造成焊后组织的差异而使低温断裂行为有所不同。采用径迹显微照相技术(PTA)研究了硼在钢中的偏聚行为,进一步探讨了不同t8/5时间对贝氏体组织形态的影响以及不同组织对低温裂纹  相似文献   

9.
The effect of hydrogen on the fracture behavior of the quenched and tempered AISI 4135 steel at 1450 MPa has been investigated by means of slow strain rate tests on smooth and circumferentially-notched round-bar specimens. Hydrogen was introduced into specimens by electrochemical charging and its content was measured by thermal desorption spectrometry (TDS) analysis. Results showed that the steel had high hydrogen embrittlement susceptibility. For both smooth and notched specimens, the fracture mode was changed from microvoid coalescence (MVC) to brittle intergranular (IG) fracture after the introduction of a small amount of diffusible hydrogen. Fracture initiated in the vicinity of the notch root for notched specimens, while it started from around the center in smooth specimens. The fracture stress decreased with increasing diffusible hydrogen content, and the decreasing trend was more prominent for specimens with a higher stress concentration factor. Taking into account the stress-driven hydrogen diffusion and accumulation in the vicinity of the notch root, the local diffusible hydrogen concentration and local fracture stress in notched specimens have been calculated. According to numerical results, the relationship between the local fracture stress and local diffusible hydrogen concentration was independent of stress concentration factor, which could account for the effect of hydrogen on the fracture stress of the steel.  相似文献   

10.
The AE method is an effective technique for inspecting corrosion damage of mild steel, such as tank bottom floors. However, the correlation between AE signals and corrosion behaviour for mild steel has not yet been fully clarified. In the present study, the authors considered that the corrosion regions of bottom floors become a strong acid environment by Cl, as reported in a previous study. Thus, the polarization resistance for the test pieces of mild steel was measured with an AC impedance method under a strong acid environment. It was clear that the polarization resistance indicated the corrosion rate for a test piece of mild steel in the experiments. While measuring the AE signals, the corrosion rate was monitored with a test piece. As a result, the AE signal showed good correlation with the corrosion rates of the test pieces. The corrosion behaviour of the test pieces was then discussed with the corrosion potential measured during the experiments. Furthermore, the cathode current was changed to control the generated hydrogen gas volume. The volume of the hydrogen gas generated from the cathode reaction was correlated to the AE signals.  相似文献   

11.
Stress corrosion cracking of the chromium steel X 210 Cr 12 in chloride and sulphate containing solutions Part 1: Influence of loading conditions on SCC – behaviour The stress corrosion cracking behaviour of the cold work steel X 210 Cr 12 with both martensitic and pearlitic structure has been investigated in distilled water as well as in aqueous chloride and sulphate solutions at room temperature by means of a fracture mechanics method. This steel is found to be sensitive to stress corrosion cracking and this behaviour points to strain induced SCC. The crack propagation is caused by hydrogen embrittlement by interaction of the corrosive produced hydrogen at the crack tip with material straining. Abnormal crack propagation can be caused by both large inhomogeneities of the structure and strain rates below threshold values. For realisation of a demanded strain rate it is necessary to use different loading conditions as follows: The CR-mode (Constant Displacement Rate) with a sufficiently high strain rate is necessary for the determination of KISCC-value as well as the region I of the crack propagation curve. On the other hand, the CL-mode (Constant Load) can lead in the region I to abnormal crack propagation with temporary crack stop (“resting effect”) because of too low strain rate. However, the CL-mode with increasing K-value is required to determine the plateau of crack propagation rate in region II as well as to the transition into the region III of instable cracking. The use of the CR-mode in region II would lead to a lower plateau of crack rate combined with discontinuous crack growth. The CD-mode (Constant Displacement) with strain rate of about zero is not applicable to determine the plateau value as well as the threshold value KISCC.  相似文献   

12.
Specimens of sensitized type AISI 304 stainless steel were subjected to constant load and exposed to an aqueous sodium thiosulphate solution. Intergranular stress-corrosion cracking was monitored simultaneously for electrochemical noise, acoustic emission, and specimen elongation. A section of the gauge length was monitored optically with subsequent analysis by digital image correlation. Correlations between the results were observed and analysed. Electrochemical noise and elongation are associated with crack propagation from the early stages, whereas acoustic emission is associated with the final stages of fracture. Digital image correlation analysis is sensitive to crack development, and is used to measure crack length and crack openings.  相似文献   

13.
In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness (K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575?°C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.  相似文献   

14.
The influence of various AC current densities on stress corrosion cracking behavior and mechanism of X80 pipeline steel was investigated in carbonate/bicarbonate solution by polarization curves and slow strain rate tensile tests. With the increasing AC current density, the SCC susceptibility of the steel increases, especially at high AC current density. A significant difference in the SCC behavior and mechanism is found for the steels with or without AC application. In the absence of AC, the fracture mode is intergranular and the mechanism is attributed to anodic dissolution. Under AC application, the cracks propagation is transgranular, and the mechanism is mixed controlled by both anodic dissolution and hydrogen embrittlement.  相似文献   

15.
This study presents an evaluation of fatigue crack propagation in three steels (A36, X52, and X70) in a simulated fuel-grade ethanol environment. A fracture mechanics testing approach was used to determine crack propagation rates as a function of the stress-intensity-factor amplitude (ΔK). Results of this testing and the fracture analysis indicate that all three materials are susceptible to enhanced fatigue damage in fuel-grade ethanol environments. We show that the damage mechanism is attributed to susceptibility of each material to ethanol stress-corrosion cracking under fatigue loading conditions and propose a model for determining crack growth rates in ethanol fuel.  相似文献   

16.
The present work was aimed at characterizing the acoustic emission (AE) response of α-brass during SCC propagation. For that purpose, slow strain rate tensile tests (SSRT) under potentiostatic control were performed in a 1 M NaNO2 solution and in Mattsson’s solution. The differences between the AE signals generated by transgranular and intergranular stress corrosion cracking (SCC) were analysed. Results show that the AE activity during the propagation of TGSCC is various orders of magnitude higher than the AE activity during the IGSCC propagation. However, the mean amplitude and rise time of the AE signals registered during the propagation of TGSCC are similar to the AE parameters of the signals registered during the propagation of IGSCC. The measured AE activity was associated with the mechanical tearing of the metallic ligaments left behind by the propagating crack.  相似文献   

17.
L.W. Tsay  J.J. Chen 《Corrosion Science》2008,50(11):2973-2980
The fatigue crack growth behaviors of AISI 316L stainless steel (SS) welds in air and gaseous hydrogen were evaluated, and further compared with the base plate. In air, the fatigue crack growth rate (FCGR) of the weld after heat-treatment at 1050 oC/1 h was similar to that of the base metal. Furthermore, all specimens became susceptible to hydrogen-accelerated crack growth. Mainly quasi-cleavage fracture related with the strain-induced martensite accounted for the accelerated crack growth in hydrogen. A smaller amount of martensite in the weld was responsible for the decreased susceptibility to hydrogen-enhanced fatigue crack growth relative to the base metal.  相似文献   

18.
硫化氢应力腐蚀破裂(sulfide stress corrosion cracking,SSCC)是制约管线钢应用的主要因素.针对X80管线钢焊接接头进行恒位移硫化氢应力腐蚀试验研究,分别测得母材、焊缝和热影响区的应力强度因子门槛值KISCC和裂纹扩展速率da/dt.通过对X80管线钢焊接接头的金相显微组织、断口形貌观察以及硬度测试,分析了X80管线钢SSCC性能的影响因素.并对WOL试样进行了三维弹塑性有限元分析,得到裂纹尖端应力场分布和氢浓度的分布特征.结果表明,热影响区的KISCC最小,裂纹扩展速率最大,具有较差的抗应力腐蚀开裂的能力,其应力腐蚀试验结果与有限元数值分析相互验证.  相似文献   

19.
低碳钢的组织对腐蚀疲劳的影响   总被引:1,自引:0,他引:1  
本文研究了两种低碳钢不同显微组织在盐水和空气中的疲劳裂纹扩展行为,发现显微组织对钢的腐蚀疲劳抗力有重要影响。还讨论了钢的腐蚀疲劳机制及断裂机制图。  相似文献   

20.
Acoustic emission (AE) signals generated by transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC) have been compared by means of slow strain rate tensile tests (SSRT) performed using both solubilised and sensitised type AISI 304 stainless steel in a 1 M NaCl + 1 M HCl solution. Results show that the AE activity during the propagation of TGSCC is much higher than the AE activity during the IGSCC propagation. However, no significant difference was found between the mean amplitude and rise-time of the AE signals registered during the propagation of TGSCC and those measured for IGSCC propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号