首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effect of the extract of Aloe vera leaves on the corrosion of zinc in 2 M HCl solution was studied using weight loss technique. A. vera extract inhibited the corrosion of zinc in 2 M HCl solution and the inhibition efficiency increased with increasing concentration of the extract but decreased with increasing temperature. The adsorption of the inhibitor molecules on zinc surface was in accordance with Langmuir adsorption isotherm. A first-order kinetics relationship with respect to zinc was obtained with and without the extract from the kinetics treatment of the data.  相似文献   

2.
Corrosion inhibition of mild steel in 2 M HCl and 1 M H2SO4 by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 °C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H2SO4 as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts.  相似文献   

3.
Ionic liquids with chemical formula 1,3-dioctadecylimidazolium bromide and N-Octadecylpyridinium bromide were synthesized by conventional and microwave-assisted reactions, respectively. Ionic liquids tested as corrosion inhibitors after polarization curves displayed corrosion protection efficiency within 82-88% at 100 ppm for mild steel in a 1 M aqueous solution of sulfuric acid. Standard free energy indicated that corrosion inhibition occurred by a chemical adsorption process. Surface analysis (SEM, EDX) completed by XRD and Mössbauer spectroscopy indicated the presence of carbon species pertaining to inhibitor and corrosion products, which was rationalized in an inhibition mechanism.  相似文献   

4.
The inhibition performance of the 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT) on mild steel in normal hydrochloric acid medium (1 M HCl) at 30 °C was tested by weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. This organic compound inhibits the acidic corrosion even at very low concentration, reaching a value of inhibition efficiency up to 98% at a concentration of 3 × 10−4 M. The results obtained from the different corrosion evaluation techniques are in good agreement. Polarisation curves indicate that 4-MAT is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through appropriate equivalent circuit model, a constant phase element (CPE) has been used. The adsorption of 4-MAT on the steel surface, in 1 M HCl solution, obeys to Langmuir’s isotherm with a very high negative value of the free energy of adsorption ΔG°ads (chemisorption). X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of mild steel in 1 M HCl medium in the presence of 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT).  相似文献   

5.
In this work, the dodecyl cysteine hydrochloride surfactant was synthesized. The surface properties of this surfactant were studied using surface tension technique. The nanostructure of this surfactant with the prepared gold nanoparticles was investigated using TEM technique. The synthesized surfactant and its nanostructure with the prepared gold nanoparticles were examined as non-toxic corrosion inhibitors for carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that the percentage inhibition efficiency (η%) for each inhibitor increases with increasing concentration until critical micelle concentration (CMC) is reached. The maximum inhibition efficiency approached 76.6% in the presence of 175 ppm of dodecyl cysteine and 90.8% in the presence of the same concentration of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles. Polarization data indicate that the selected additives act as mixed type inhibitors. The slopes of the cathodic and anodic Tafel lines (βc and βa) are approximately constant and independent of the inhibitor concentration. Analysis of the impedance spectra indicates that the charge transfer process mainly controls the corrosion process of carbon steel in 2 M HCl solution both in the absence and presence of the inhibitors. Adsorption of these inhibitors on carbon steel surface is found to obey the Langmuir adsorption isotherm. From the adsorption isotherms the values of adsorption equilibrium constants (Kads) were calculated. The relatively high value of (Kads) in case of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles reveals a strong interaction between the inhibitor molecules and the metal surface.  相似文献   

6.
The inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol (PDTT) Schiff base on mild steel corrosion in 0.5 M HCl was studied for both short and long immersion time. For this purpose, potentiodynamic polarization, electrochemical impedance spectroscopy, linear polarization resistance, hydrogen gas evolution, the change of open circuit potential as a function of immersion time, SEM and AFM techniques were utilized. The PDTT Schiff base has shown remarkable inhibition on the corrosion of mild steel in 0.5 M HCl solution. The high inhibition efficiency was attributed to the blocking of active sites by adsorption of inhibitor molecules on the steel surface.  相似文献   

7.
In this paper, the inhibition ability of benzimidazole and its derivatives against the corrosion of mild steel in 1M HCl solution was studied. The change of impedance parameters observed by variation of inhibitors concentration within the range of 50-250 ppm was an indication of their adsorption. The thermodynamic adsorption parameters proposed that these inhibitors retard both cathodic and anodic processes through physical adsorption and blocking the active corrosion sites. The adsorption of these compounds obeyed the Langmuir’s adsorption isotherm. The inhibition efficiency was increased with inhibitor concentration in the order of 2-mercaptobenzimidazole > 2-methylbenzimidazole > benzimidazole, which is in accordance with the variation of apparent activation energy of corrosion.  相似文献   

8.
The present article describes the inhibition effect of amino acids cysteine (Cys), methionine (Met) and alanine (Ala), towards the corrosion of lead-alloy (Pb-Ca-Sn) in H2SO4 solution by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement and scanning electron microscopy (SEM) methods. The influence of inhibitor concentration, temperature and time on inhibitory behavior of the amino acids was investigated. The corrosion data including corrosion current density (Icorr), corrosion potential (Ecorr) and charge transfer resistance (Rct) were determined from Tafel plots and EIS. Recording impedance spectra showed that the charge transfer resistance is increased by increasing adsorption time. The SEM micrographs revealed that the corroded surface area is decreased in the presence of amino acids. Meanwhile, the inhibition efficiency (IE) was found to be depending on the type of amino acid and its concentration. The IE for 0.1 M Cys in 0.5 M H2SO4 is greater than 96%. Adsorption isotherms were fitted by Langmuir isotherm.  相似文献   

9.
The effect of sodium eperuate prepared from Wallaba (Eperua falcata Aubl) extract on zinc corrosion was investigated in alkaline solutions with chloride ions (i.e., simulated concrete pore solutions) by using electrochemical techniques. Sodium eperuate inhibits the corrosion of zinc in 0.1 M NaCl solutions with pH 9.6. As its concentration increases to 1 g/L, the inhibition efficiency reaches approximately 92%. In alkaline solutions with pH 12.6, sodium eperuate has no adverse effect on passivity of zinc, and retards the chloride attack. These suggest that sodium eperuate is an effective inhibitor for the protection of zinc in alkaline environments.  相似文献   

10.
The effect of the extract of Phyllanthus amarus leaves on the corrosion of aluminum in 2 M NaOH solution was studied using chemical technique. The extract acts as corrosion inhibitor, with 76% efficiency at the highest concentration in the alkaline environment and the inhibition efficiency increased with increasing concentration of the extract. The adsorption of the inhibitor on aluminum surface was in accordance with the Langmuir adsorption isotherm. A zero-order kinetics relationship with respect to aluminum was obtained with and without the extract from the kinetics treatment of the data.  相似文献   

11.
The corrosion inhibition properties of Gossypium hirsutum L. leave extracts (GLE) and seed extracts (GSE) in 2 M sodium hydroxide (NaOH) solutions were studied using chemical technique. Gossypium extracts inhibited the corrosion of aluminium in NaOH solution. The inhibition efficiency increased with increasing concentration of the extracts. The leave extract (GLE) was found to be more effective than the seed extract (GSE). The GLE gave 97% inhibition efficiency while the GSE gave 94% at the highest concentration.  相似文献   

12.
The electrochemical behavior of duplex stainless steel (DSS) in LiBr media was investigated by anodic cyclic polarization curves and AC impedance measurements. The effect of bromide concentration and the presence of chromate in the solutions on the corrosion behavior of AISI 2205 was studied. Cyclic polarization curve analyses showed that there was different pitting susceptibility of passive films depending on the LiBr concentration. Pitting potential decreases with LiBr concentration in a semilogarithmic scale following two different slopes. Chromate presence displaces pitting potentials towards more positive values at low LiBr concentrations but it has no effect when LiBr concentration increases.The comparative analysis carried out in LiBr and LiBr chromate-containing solutions at two different concentrations, 0.016 M and 0.032 M, verifies the assumption that halogen ions facilitate inhibitor adsorption. The addition of halides strongly increased the inhibition efficiency of chromate. The passive film becomes more resistant when bromide concentration increases, although film thickness decreases.  相似文献   

13.
The inhibitor effect of tryptamine on the corrosion of mild steel in 0.5 M hydrochloric acid at 30 °C was investigated using linear polarization, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with an increase in concentration of tryptamine. At 500 ppm tryptamine the inhibition efficiency calculated by these techniques is around 97%. Cathodic and anodic polarization curves of mild steel in the presence of different concentrations of tryptamine at 30 °C reveal that it is a mixed type inhibitor. Tryptamine follows Langmuir adsorption with adsorption free energy of −35.07 kJ mol−1.  相似文献   

14.
A newly synthesized glycine derivative (termed GlyD), 2-(4-(dimethylamino)benzylamino)acetic acid hydrochloride, was used to inhibit uniform and pitting corrosion processes of Al in 0.50 M KSCN solutions (pH 6.8) at 25 °C. For uniform corrosion inhibition study, Tafel extrapolation, linear polarization resistance and impedance methods were used, complemented with SEM examinations. An independent method of chemical analysis, namely ICP-AES (inductively coupled plasma atomic emission spectrometry) was also used to test validity of corrosion rate measured by Tafel extrapolation method. GlyD inhibited uniform corrosion, even at low concentrations, reaching a value of inhibition efficiency up to 97% at a concentration of 5 × 10−3 M. Results obtained from the different corrosion evaluation techniques were in good agreement. This new synthesized glycine derivative was also used to control pit nucleation and growth on the pitted Al surface based on cyclic polarization, potentiostatic and galvanostatic measurements. The pitting potential (Epit) and the repassivation potential (Erp) increased by the addition of GlyD. Thus GlyD suppressed pit nucleation and propagation. Nucleation of pit was found to take place after an incubation time (ti). The rate of pit nucleation and growth decreased with increase in inhibitor concentration. Morphology of pitting was also studied as a function of the applied anodic potential and solution temperature. Cross-sectional view of pitted surface revealed the formation of large distorted hemispherical and narrow deep pits. GlyD was much better than Gly in controlling uniform and pitting corrosion processes of Al in these solutions.  相似文献   

15.
The influence of 2,4,6-tris (2-pyridyl)-1,3,5-triazine (TPTZ) on the corrosion of tin, indium and tin-indium alloys in 0.5 M HCl solution at different temperatures was studied. Potentiodynamic cathodic polarization and extrapolation of cathodic and anodic Tafel lines techniques were used to obtained experimental data. In the case of tin, the percent inhibition efficiency (IE%) increases as both concentration of TPTZ and temperature are increased. The value of activation energy (Ea) is smaller in the presence of TPTZ than that in uninhibited solution, and decreases with increasing the concentration. However, the effect of TPTZ on indium and the investigated alloys exhibited similar behavior; so, the maximum inhibition efficiency is observed at lowest concentration (10−6 M) of TPTZ. Then, the value of inhibition efficiency starts to decrease gradually with increasing TPTZ concentration than that of 10−6 M. But at higher concentration (10−3 M) the corrosion current density (Icorr) is still lower than that in uninhibited solution. SEM photographs support that the higher inhibition efficiency is observed at 10−6 M of TPTZ.The plots of ln K versus 1/T in the presence of the TPTZ in the case of tin, the inhibitor showed linear behavior. The standard enthalpy, Δads., entropy, Δads. and free energy changes of adsorption Δads. were evaluated using Frumkin adsorption isotherm.  相似文献   

16.
New diamine derivatives, namely 2-[{2-[bis-(2-hydroxyethyl)amino]ethyl}(2-hydroxyethyl)amino]ethanol (DAME) and 2-[{2-[bis-(2-hydroxyethyl)amino]ethyl}(2-hydroxyethyl)amino]propanol (DAMP) were synthesised and their inhibitive action against the corrosion of mild steel in 1 M HCl solution were investigated at 308 K. The detailed study of DAME is given using gravimetric measurements and polarization curves method. Results show that DAME is a good inhibitor and inhibition efficiency reaches 91.7% at 10−3 M. Tafel polarization study revealed that DAME acts as a mixed-type inhibitor. The inhibitor adsorption process in mild steel/DAME/hydrochloric acid system was studied at different temperatures (308-353 K) by means of weight loss measurements. The adsorption of DAME on steel surface obeyed Langmuir’s adsorption isotherm. The kinetic and thermodynamic parameters for mild steel corrosion and inhibitor adsorption, respectively, were determined and discussed. The comparative study of inhibitive performance of the two diamine derivatives revealed that DAME is more effective than DAMP. Quantitative Structure-Activity Relationship (QSAR) approach has been conducted in attempt to correlate the corrosion inhibition properties of these diamine derivatives with their calculated quantum chemical parameters.  相似文献   

17.
A cationic gemini-surfactant, namely 1,4-bis (1-chlorobenzyl-benzimidazolyl)-butane (CBB) was synthesized and its inhibition effect on the corrosion of mild steel in 0.5 M HCl solution was investigated by weight loss and electrochemical techniques. The results showed that CBB acts as an excellent corrosion inhibitor in 0.5 M HCl by suppressing simultaneously the cathodic and anodic processes via chemical adsorption on the surface of steel, which followed the Langmuir adsorption isotherm. The inhibition efficiency increased with the increase of CBB concentration and temperature. The adsorption mechanism of the compound was discussed in terms of thermodynamic and kinetic parameters deduced from the experimental data.  相似文献   

18.
Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl)quinolin-4-yl]thio}propanohydrazide (QMQTPH) was synthesized, characterized and tested as a corrosion inhibitor for mild steel in 1 M and 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Polarization resistances calculated from the EIS measurements were in good agreement with those obtained from direct current (DC) polarization measurements. The mild steel samples were also analyzed by scanning electron microscopy (SEM). The results showed that QMQTPH is an excellent inhibitor for mild steel in acid medium. The inhibition was assumed to occur via adsorption of the inhibitor molecule on the metal surface. It acts as an anodic inhibitor. In the 30° to 60 °C temperature range, the QMQTPH adsorption follows Langmuir isotherm model. The protection efficiency increased with increasing inhibitor concentration in the range 10−5 − 10−3 M, but slightly decreased with increasing temperature.  相似文献   

19.
The inhibition effect of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) on the corrosion of mild steel in hydrochloric acid medium has been investigated using weight loss measurements, electrochemical impedance spectroscopy, potentiodynamic polarization and quantum chemical study. Among the compounds studied, DHPM-3 exhibited the best inhibition efficiency η (%) 99% at 10 mg L−1 at 308 K. Polarization measurements indicate that all the examined compounds are of mixed-type inhibitor. The adsorption of studied compounds obeyed the Langmuir’s adsorption isotherm. The electronic properties obtained using quantum chemical approach, were correlated with the experimental inhibition efficiencies.  相似文献   

20.
The inhibition effect of novel nonionic surfactants on the corrosion of carbon steel (CS) in 1 M HCl was studied at different temperatures (20-60 °C) by weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The CS surface morphology was investigated by SEM. The obtained results showed that the prepared nonionic surfactants are excellent inhibitor in 1 M HCl, and the inhibition efficiency (η) increases with the inhibitor concentration and temperature increasing. The adsorption of inhibitors on the CS surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. Polarization curves show that the synthesized inhibitors are mixed-type inhibitors in hydrochloric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号