首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
A study of the St37 steel rotating disc electrode/cooling water interface was carried out using an environmentally friendly inhibitor mixture including Tartaric acid (TaA) and Zinc sulfate. Electrochemical Impedance Spectroscopy measurements were performed in the absence and presence of inhibitor in cooling water under static conditions and at different rotation speeds. TaA did not show good inhibition efficiency at quiescent conditions. However, its performance became significantly better in the presence of Zn2+ ions. The increase in electrode rotation speed also enhanced the inhibition efficiency of TaA and its mixture with Zn2+ ions. The synergism between TaA and Zn2+ ions and the solution hydrodynamics promoted the formation and adsorption of Tartrate-Zn2+ complexes on the metal surface, leading to a highly protective layer formed on metal surface as a barrier against diffusion of corrosive ions. Analysis by scanning electron microscopy and energy dispersive X-ray analysis was presented for both the corroded and protected metal surfaces. Based on results, a mechanism for corrosion inhibition and the synergism between two components was proposed.  相似文献   

2.
Abstract

The corrosion inhibition of mild steel by polyhydric alcohol phosphate ester (PAPE) in natural sea water has been investigated by polarisation curves, electrochemical impedance spectroscopy (EIS) and surface analytical techniques. The results have shown that PAPE acts as a mixed type (anodic and cathodic) negative catalytic effect interface inhibitor and that the adsorption is of the Langmuir type. The inhibitor can adsorb immediately and compactly on the steel surface, the thickness of the film increasing with time. The adsorption behaviour involves the formation of complexes between the R1 functional group of the PAPE molecular structure and metal ions on the steel surface, such as Fe2+, Mg2+, Ca2+, etc.  相似文献   

3.
Electrochemical techniques, weight loss method and surface analysis were used to study the synergistic inhibition offered by Zn2+ and piperidin-1-yl-phosphonic acid (PPA) to the corrosion of Armco iron in 3% chloride solution. It is observed that the combination between PPA and Zn2+ shows excellent inhibition efficiency. The potentiodynamic polarization curves reveal that 5 × 10−3 mol l−1 of PPA has only 76.7% inhibition efficiency whereas the mixture containing 5 × 10−3 mol l−1 PPA -20%Zn2+ has 90.2% inhibition efficiency. This suggests that a synergistic effect exists between Zn2+ and PPA. The Fourier transform infrared (FTIR) spectrum of the film formed on iron indicates phosphonates zinc salt formation. A suitable mechanism of corrosion inhibition is proposed based on the results obtained. The surface film analysis showed that in the absence of Zn2+, the protective film consists of Fe2+-PPA complex formed on the anodic sites of the metal surface, whereas in the presence of Zn2+, the protective film consists of Fe2+-PPA complex and Zn(OH)2.  相似文献   

4.
The corrosion behavior of cold isostatically pressed (CIP) high purity alumina ceramics in aqueous HCl and H2SO4 solutions with various concentrations has been studied simultaneously at room temperature (25 °C). Corrosion tests were also performed with 0.65 mol/l HCl and 0.37 mol/l H2SO4 solutions at 40, 55 and 70 °C for 48 h. Chemical stability was monitored by determining the amount of Al3+, Mg2+, Ca2+, Na+ Si4+ and Fe3+ ions eluted in different concentrations of HCl and H2SO4 solutions by means of atomic absorption spectrometry (AAS). By increasing the concentration from 0.37 to 6.5 mol/l, it was notified that the corrosion susceptibility in HCl and H2SO4 solutions for the CIP alumina specimens at room temperature decreases.  相似文献   

5.
The influence of bath pH and also citrate and molybdate concentration, on the electrodeposition process of ternary Zn-Ni-Mo alloy coatings has been examined. The occurrence of the particular forms of the metal-citrate complexes in the electrolytes was analysed using UV-VIS spectroscopy and on the basis of the stability constants of the complexes. In the solutions with lower pH (4·5 and 5·7), in which free metal ions and ZnHCit? and NiHCit? complexes predominate, anomalous codeposition of nickel with zinc took place. In electrolytes with higher pH, containing excess of citrate, in which all the metal ions occur in the form of citrate complexes, and about 20% of the Zn2+ and Ni2+ ions form a ZnNiCit24? mixed complex, the codeposition changes from anomalous to normal. The percentage of Mo in the alloy increases with the increase in concentration of uncomplexed MoO42? ions in the solution. Alloys with much higher Mo content may be obtained from the bath in which preferential deposition of nickel (normal codeposition) takes place.  相似文献   

6.
The electrochemical behaviour of Cu-40Zn alloy, in 3% NaCl medium pure and polluted by 2 ppm of S2− ions, has been studied in the absence and presence of the 3-amino-1,2,4 triazole (ATA) as corrosion inhibitor. Electrochemical measurements (polarisation curves and electrochemical impedance spectroscopy) showed that sulphides accelerate the alloy corrosion. The studies revealed that ATA inhibits both cathodic and anodic reactions, indicating a mixed type of inhibition. The inhibiting effect was higher in presence of S2− ions than in its absence. Scanning electron microscopy analysis showed that the inhibitor acts by preventing the adsorption of S2− ions, and formation of Cu2S at the alloy surface. The inhibition efficiency reaches 98% at a concentration of 5 × 10−3 M.  相似文献   

7.
The synergistic inhibition effect of rare earth cerium(IV) ion (Ce4+) and sodium oleate (SO) on the corrosion of cold rolled steel (CRS) in 3.0 M phosphoric acid (H3PO4) has been investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) methods. The results reveal that SO has a moderate inhibitive effect and its adsorption obeys Temkin adsorption isotherm. Ce4+ has a poor effect. However, incorporation of Ce4+ with SO improves the inhibition performance significantly, and exhibits synergistic inhibition effect. SO acts as a cathodic inhibitor, while SO/Ce4+ mixture acts as a mixed-type inhibitor.  相似文献   

8.
In this paper, the influence of pH on the corrosion behavior of AISI 1020 carbon steel in simulated cooling water was investigated by using electrochemical and surface analysis methods. The results of polarization showed that the corrosion resistance of carbon steel increased with an increase in pH of the simulated water, and the corrosion control process changed from cathodic polarization to anode polarization control. The scale and corrosion inhibitor 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) had a certain anodic corrosion inhibition effect on carbon steel, whereas Zn2+ acted as a cathodic inhibitor for carbon steel in simulated water with pH 7–9. In simulated water containing both PBTCA and Zn2+, a good synergistic corrosion inhibition was found between PBTCA and Zn2+, and their corrosion inhibition effect on carbon steel was the best at pH 8. This was attributed to the formation of Zn(OH)2 precipitate film in the cathode region and the formation of Zn–PBTCA complex film in the anode region at this pH.  相似文献   

9.
The corrosion resistance of Ti-5%Ta-2%Nb alloy and DOCTOR (double oxide coating on titanium for reconditioning) coated titanium by O5+ ion irradiation were compared and investigated for their corrosion behaviour. O5+ ion irradiations were carried out at a dose rate of 1 × 1017, 1 × 1018 and 1 × 1019 ions/m2 at 116 MeV. The surface properties and corrosion resistance were evaluated by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), glancing-angle X-ray diffraction (GXRD) and electrochemical testing methods. The results of electrochemical investigations in 11.5 N HNO3 indicated that the open circuit potential (OCP) of DOCTOR coated titanium is nobler than Ti-5%Ta-2%Nb alloy. The potentiodynamic polarization study of Ti-5%Ta-2%Nb alloy and DOCTOR coated specimen indicated decrease in passive current density with increase in ion doses (1 × 1017 to 1 × 1019 ions/m2) indicating decrease in anodic dissolution. Nyquist arc behaviour in the electrochemical impedance study substantiated the enhancement in oxide layer stability by O5+ ion irradiation. AFM results revealed that the DOCTOR coated Ti surface was dense without gross voids, and the surface roughness decreased by O5+ ion irradiation, but increased after corrosion test. EDX and GXRD patterns of DOCTOR coated Ti sample indicated that the coating was mainly composed of rutile TiO2. Based on the above results, the O5+ ion irradiation effect on corrosion behavior of Ti-5%Ta-2%Nb alloy and DOCTOR coated titanium are discussed in this paper.  相似文献   

10.
In this paper, the effects of scaling ions (Ca2+ and Mg2+) on corrosion and scaling processes of galvanized steel pipe in geothermal water are presented. Spherical corrosion products and needle-shaped scale coexisted on the pipe surface. The concentration of Zn2+ and OH affected the nuclei formation of scale. The corrosion products and scale were identified as Zn(OH)2, ZnO, CaCO3 and MgCO3, respectively. When scale formed on the galvanized steel pipe, the corrosion rate slowed down and the pitting region became smaller.  相似文献   

11.
Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42–86% at 25 °C and 25–60% at 40 °C. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe+2 complexes and Fe+2 chelates with phthalamates prevented steel from further corrosion.  相似文献   

12.
The corrosion behavior of mild steel has been investigated during the wet and dry cyclic transitions containing Cr3+ ion added as sulfate in order to gain a better understanding of the influence of Cr on the atmospheric corrosion of steels. The corrosion rate during drying is greatly suppressed by the existence of Cr3+ ion in the electrolyte covered with the surface. Lower corrosion rates are observed during drying even if the surface have been polarized to negative potentials below −200 mVSHE during the wet corrosion conditions in which the surface-covered electrolyte contains Cr3+ ion. This corrosion behavior is identical to the case of Cr-containing steel for the wet and dry cyclic transitions without the addition of Cr3+ ion. The composition of rust layer after the wet and dry cyclic transitions is composed of α-FeOOH, γ-FeOOH and Fe3−δO4 for both cases of non-Cr3+ and Cr3+-containing condition, and no significant difference in the mass fraction of the above rust substances between two conditions is observed by means of Mössbauer spectroscopy. The only difference in the rust layer is that the rust formed under the wet and dry cyclic transitions containing Cr3+ ion contains a certain amount of Cr near the steel/rust interface. Those results suggest that the role of Cr during the wet and dry cyclic transitions is the inhibition of the rust reduction and the formation of Fe2+-state intermediate by the existence of Cr in the rust layer. This can lead to the inhibition of the oxygen reduction during drying.  相似文献   

13.
The influence of 1,2-diaminoethane (DAE) on aluminium corrosion in H2SO4 solutions (pH 3) was investigated. In pure H2SO4, rapid uniform corrosion is followed by inhibition due to the formation of stable Al-sulphate binuclear bidentate metal bound surface complexes via a ligand exchange mechanism with two neighbouring sites. Metastable pitting is also observed. DAE acts as a strong corrosion inhibitor for both uniform and localised corrosion, due to the formation of Al-DAE monodentate hydrogen-bond surface complexes either by direct adsorption of the protonated molecule on Al-OH sites or via a ligand exchange mechanism with the proton of an site.  相似文献   

14.
The polarization behaviour of iron in perchlorate, chloride and sulphate base electrolytes at pH values ranging from 0.3 ≤ pH ≤ 3.5 was found to be changed drastically by the addition of small amounts of the heavy metal ions Mez+ = Pb2+, Tl+ to the electrolyte solutions. At potentials positive to the corresponding Me/Mez+-electrode a strong inhibition of the active iron dissolution process as well as the charge transfer controlled hydrogen evolution was observed. This effect can be explained by an underpotential deposition of Mez+ leading to a complete coverage of Me-adsorbate on the iron surface. In deaerated solution an inhibition factor of 98% can be obtained, whereas in aerated solutions especially under rotating conditions the corrosion rate was not decreased. In the latter case the corrosion process is dominantly determined by the limiting diffusion controlled oxygen reduction reaction which was found to be not markedly inhibited by the metal adsorbates. In acid chloride solutions a competetive adsorption of Cl? must be taken into account.  相似文献   

15.
The effect of newly synthesized S2N2-Schiff bases is investigated on stainless steel 304 corrosion in 15% hydrochloric acid. The Tafel curves of the steel in hydrochloric acid containing Schiff bases show inhibition for both cathodic and anodic processes. Moreover, double layer capacitance and charge transfer resistance values are derived from Nyquist plots. The inhibition efficiency of Schiff bases increases with the increase in inhibitor concentration and temperature. Moreover, Langmuir adsorption isotherm is suitable to fit experimental data of the studied inhibitors. Effect of temperature on the efficiency of the corrosion inhibition shows chemisorption of inhibitors on the surface of metal.  相似文献   

16.
The corrosion behavior of cold rolled steel in different concentrations of peracetic acid (PAA) has been studied by electrochemical technique at 0 °C, 10 °C, 20 °C and 30 °C, respectively. Electrochemical parameters like corrosion potential, corrosion current density and corrosion rate were determined. The results show that concentrations of PAA and test temperatures can affect the corrosion rate obviously. The corrosion rate increases with increase of the concentration of PAA at each temperature, but the maximum corrosion rate appears at 20 °C at each same concentration of PAA. The characteristic chemical reactions were used to investigate the form of Fe ions dissolved in PAA solutions. It was found that the Fe3+ ions were the dominant corrosion products. A probable corrosion mechanism is presented to explain the experimental results.  相似文献   

17.
G.A. Zhang 《Corrosion Science》2009,51(8):1589-263
Electrochemical corrosion behavior of X65 steel in CO2-saturated formation water in the absence and presence of acetic acid was studied by electrochemical measurements, scanning vibrating micro-electrode (SVME), localized electrochemical impedance spectroscope (LEIS) and surface analysis techniques. It is found that, when steel is immersed in formation water, the dissolution of Fe dominates the anodic process and the steel is in active dissolution state. Adsorption of intermediate product on the electrode surface results in generation of an inductive loop in the low frequency range of EIS plot. As corrosion proceeds, the concentration of Fe2+ in the solution increases. When the product of [Fe2+] × [] exceeds solubility product of FeCO3, FeCO3 will deposit on the electrode surface, and protects the steel substrate from further corrosion. The steel is in a “passive” state. When the electrode surface is completely covered with FeCO3 film, the inductive loop in the low frequency range disappears. In the presence of acetic acid in formation water, the cathodic reaction will be enhanced due to the direct reduction of undissociated acetic acid. Addition of acetic acid degrades the protectiveness of corrosion scale, and thus, enhances corrosion of steel by decreasing the FeCO3 supersaturation in solution.  相似文献   

18.
Electrochemical measurements (steady‐state current‐voltage curves and AC impedance) were coupled with mass‐loss measurements, SEM examinations, and EDSX analyses to investigate the inhibition of corrosion of a carbon steel by a mixture of phosphonic acid HEDP (acid 1, hydroxyethylene, 1‐1 diphosphonic) and sodium metasilicate pentahydrate Na2SiO3. 5H2O in an industrial hard water containing 3.10?3 M Ca2+ ions. At pH 7, HEDP and Ca2+ act in a synergistic manner, by formation of a HEDP and calcium containing layer. Addition of silicate at this pH value, allows to reach an efficiency of 94% due to an additive inhibition effect. At pH 11, metasilicate, HEDP, and Ca2+ ions reinforce the passive layer in a synergistic way. The mixture (1.7 · 10?5 M HEDP + 2.6 · 10‐3 M SiO2?3) in the Ca2+ containing electrolyte is shown to be able to inhibit efficaciously the corrosion of iron at room temperature, considering uniform corrosion at pH 7 or pitting corrosion at pH 11.  相似文献   

19.
The synergistic inhibition effect of rare earth cerium(IV) ion and 3,4-dihydroxybenzaldehye (DHBA) on corrosion of cold rolled steel (CRS) in H2SO4 solution was first investigated by weight loss and potentiodynamic polarization methods. Effects of inhibitor concentration, temperature, immersion time and acid concentration on synergism are discussed in detail. The results reveal that DHBA has moderate inhibitive effect and its adsorption obeys Temkin adsorption isotherm. For the cerium(IV) ion, it has negligible effect. However, incorporation of Ce4+ with DHBA improves the inhibition performance significantly, and produces strong synergistic inhibition effect.  相似文献   

20.
M.A. Hegazy   《Corrosion Science》2009,51(11):2610-2618
The corrosion inhibition characteristics of the synthesized cationic gemini surfactants, namely bis(p-(N,N,N-decyldimethylammonium bromide)benzylidene thiourea (10-S-10), bis(p-(N,N,N-dodecyldimethylammonium bromide)benzylidene thiourea (12-S-12) and bis(p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene thiourea (14-S-14) on the carbon steel corrosion in 1 M hydrochloric acid have been investigated at 25 °C by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiencies obtained from all methods employed are in good agreement with each other. The obtained results show that compound 14-S-14 is the best inhibitor with an efficiency of 97.75% at 5 × 10−3 M additive concentration. Generally, the inhibition efficiency increased with increase of the inhibitor concentration. Changes in impedance parameters (charge transfer resistance, Rct, and double-layer capacitance, Cdl) were indicative of adsorption of 14-S-14 on the metal surface, leading to the formation of a protective film. The potentiodynamic polarization measurements indicated that the inhibitors are of mixed type. The adsorption of the inhibitors on the carbon steel surface in the acid solution was found to obey Langmuir’s adsorption isotherm. The free energy of adsorption processes were calculated and discussed. The surface parameters of each synthesized surfactant were calculated from its surface tension including the critical micelle concentration (CMC), maximum surface excess (Γmax) and the minimum surface area (Amin). The free energies of micellization (ΔGomic) were calculated. The surface morphology of carbon steel sample was investigated by scanning electron microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号