首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibitive performance of some synthesized thiophenol derivatives on corrosion behavior of mild steel in 0.1 M HCl solution was investigated by means of electrochemical techniques, quantum chemical and optical microscopy. The increase in concentration and immersion time shows a positive effect on inhibition efficiency while temperature has a negative effect. Inhibitor molecules directly adsorb at surface on the basis of donor–acceptor interactions between the π-electrons of benzene, sulfur and nitrogen atoms and the vacant d-orbitals of iron atoms. According to the thermodynamic parameters, present inhibitors adsorb physically. Optical microscopy examinations demonstrate a decrease in corrosion attacks in presence of inhibitors.  相似文献   

2.
Influence of hydrodynamic conditions on the corrosion of St52-3 type steel rotating disc electrode, RDE, in 3.5% NaCl and its corrosion inhibition using K2HPO4 have been studied. Results showed that by rotating the electrode in blank and inhibited solutions, corrosion current density, icorr, increased, corrosion potential, Ecorr, shifted toward more positive values and charge transfer resistance, Rct, decreased. The inhibition efficiencies increased with electrode rotation rate. This increase was attributed to the enhanced mass transport of inhibitor molecules toward the metal surface and formation of more protective films. Little decrease of efficiencies at higher rotation speeds was probably because of the separation of protective films due to high shear stresses.  相似文献   

3.
Nitrogen oxide (NOx) and particulate matter (PM) emissions from diesel engines are reduced by mixing water in the diesel fuel in the form of water-in-diesel emulsion. The results of experiment showed that blend of span 80 and tween 80 at HLB 6 was found to be the most suitable emulsifier for water/diesel emulsion. The effect of chlorhexidine digluconate on the corrosion of carbon steel electrode in aerated stagnant water/diesel emulsion solution has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency was found to increase with increasing inhibitor concentration. The inhibition is attributed to adsorption of the inhibitor on the carbon steel surface. The adsorption behavior of chlorhexidine digluconate on the carbon steel surface follows Temkin-type isotherm. The standard free energies of adsorption are lower than 40 kJ mol−1 confirming the physical adsorption of chlorhexidine digluconate on the electrode surface. Chlorhexidine digluconate has a significant inhibiting effect on the growth of micro-organisms in the liquid fuel and protection efficiencies up to 99.9% were measured.  相似文献   

4.
Electrochemical corrosion behavior of X65 steel in CO2-containing oilfield formation water in the presence of acetic acid (HAc) was investigated by various electrochemical measurements and analyses as well as thermodynamic calculations of ionic concentrations, reaction rate constants and equilibrium electrode potentials. A conceptual model was developed to illustrate corrosion processes of steel in oilfield formation water system. The anodic reactions of the steel contain a direct dissolution of Fe, Fe → Fe2+ + 2e, and the formation of corrosion scale, FeCO3, by Fe + → FeCO3 + H+ + 2e. The cathodic processes contain the reduction of H+, , H2O and HAc, where reduction of HAc has the least negative equilibrium potential and thus dominates the cathodic process. With addition of HAc in the solution, both cathodic and anodic reaction rates increase remarkably. It is attributed to the fact that HAc inhibits or degrades the formation of protective scales due to the decrease of solution pH. Upon electrode rotation, the measured impedance decreases with the increase in HAc concentration. The FeCO3 scale will not form on electrode surface. When HAc concentration is less than 1000 ppm, the adsorbed intermediate product is not significant, resulting in generation of a low-frequency inductive loop in EIS plots. When HAc concentration is more than 3000 ppm, the adsorption of intermediate product is significant, generating overlapped capacitive semicircles in EIS measurements.  相似文献   

5.
4-Carboxyphenylboronic acid (CPBA) has been found to be an efficient carbon dioxide (CO2) corrosion inhibitor for steel in aqueous media. The results indicate that the addition of CPBA to CO2 containing sodium chloride solutions at a low concentration is able to retard corrosion anodic reactions, reduce corrosion current densities, increase charge transfer and total resistances, resulting in more uniform and smoother steel surfaces. These effects are attributed to the formation of a barrier layer on steel surface, which provides metal surface protection. The inhibitor was also found to mitigate corrosion by promoting random distribution of minor anodes.  相似文献   

6.
Passive films formed on mild steel in aqueous 8.6 mM NaCl solutions (pH 8), containing either or , have been studied with X-ray photoelectron spectroscopy. For either anion these films are ∼5 nm deep, and the primary chemical state of iron is Fe3+. Following exposure to , the film consists of a sub-layer (∼4.1 nm) composed largely of ferric oxide/hydroxide, overlaid by Fe2(MoO4)3 (∼0.6 nm). As regards , spectra are consistent with the film being closely related to γ-Fe2O3. Furthermore, a reduction product of , potentially N2, is present, displaying a depth profile comparable to that of molybdate.  相似文献   

7.
G.A. Zhang 《Corrosion Science》2009,51(8):1589-263
Electrochemical corrosion behavior of X65 steel in CO2-saturated formation water in the absence and presence of acetic acid was studied by electrochemical measurements, scanning vibrating micro-electrode (SVME), localized electrochemical impedance spectroscope (LEIS) and surface analysis techniques. It is found that, when steel is immersed in formation water, the dissolution of Fe dominates the anodic process and the steel is in active dissolution state. Adsorption of intermediate product on the electrode surface results in generation of an inductive loop in the low frequency range of EIS plot. As corrosion proceeds, the concentration of Fe2+ in the solution increases. When the product of [Fe2+] × [] exceeds solubility product of FeCO3, FeCO3 will deposit on the electrode surface, and protects the steel substrate from further corrosion. The steel is in a “passive” state. When the electrode surface is completely covered with FeCO3 film, the inductive loop in the low frequency range disappears. In the presence of acetic acid in formation water, the cathodic reaction will be enhanced due to the direct reduction of undissociated acetic acid. Addition of acetic acid degrades the protectiveness of corrosion scale, and thus, enhances corrosion of steel by decreasing the FeCO3 supersaturation in solution.  相似文献   

8.
The adsorption and inhibition effect of Ascorbyl palmitate (AP) on carbon steel in ethanol blended gasoline containing water as a contaminant (GE10 + 1%water) was studied by weight loss and electrochemical impedance spectroscopic (EIS) techniques. The results showed that the addition of ethanol and water to gasoline increase the corrosion rate of carbon steel. AP inhibits the corrosion of carbon steel in (GE10 + 1% water) solution to a remarkable extent. The adsorption of AP on the carbon steel surface was found to obey the Langmuir adsorption isotherm model. The values of activation energy (Ea) and various thermodynamic parameters were calculated and discussed.  相似文献   

9.
A cationic gemini-surfactant, namely 1,4-bis (1-chlorobenzyl-benzimidazolyl)-butane (CBB) was synthesized and its inhibition effect on the corrosion of mild steel in 0.5 M HCl solution was investigated by weight loss and electrochemical techniques. The results showed that CBB acts as an excellent corrosion inhibitor in 0.5 M HCl by suppressing simultaneously the cathodic and anodic processes via chemical adsorption on the surface of steel, which followed the Langmuir adsorption isotherm. The inhibition efficiency increased with the increase of CBB concentration and temperature. The adsorption mechanism of the compound was discussed in terms of thermodynamic and kinetic parameters deduced from the experimental data.  相似文献   

10.
The electrochemical corrosion behavior of X65 pipeline steel in the simulated oil/water emulsion was investigated under controlled hydrodynamic and electrochemical conditions by rotating disk electrode technique. Results demonstrated that mass-transfer of oxygen plays a significant role in the cathodic process of steel in both oil-free and oil-containing solutions. Electrode rotation accelerates the oxygen diffusion and thus the cathodic reduction. The higher limiting diffusive current density measured in oil-containing solution is due to the elevated solubility of oxygen in oil/water emulsion. The anodic current density decreases with the increase of electrode rotating speed, which is attributed to the accelerated oxygen diffusion and reduction, enhancing the steel oxidation. Addition of oil decreases the anodic dissolution of steel due to the formation of a layer of oily phase on steel surface, increasing the reaction activation energy. The steel electrode becomes more active at the elevated temperature, indicating that the enhanced formation of oxide scale is not sufficiently enough to offset the effect resulting from the enhanced anodic dissolution reaction kinetics. The corrosion reaction mechanism is changed upon oil addition, and the interfacial reaction is activation-controlled, rather than mass-transfer controlled. When sand particles are added in oil/water emulsion, there is a significant increase of corrosion of the steel. The presence of sands in the flowing slurry would impact and damage the oxide film and oily film formed on the steel surface, exposing the bare steel to the corrosive solution.  相似文献   

11.
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l−1) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l−1 BTA and 2 g l−1 SP showed optimum enhanced inhibition compared with their individual effects.  相似文献   

12.
Experiments on the corrosion of carbon steel in three kinds of artificial potable waters containing different concentrations of aggressive anions, Cl and , open to air in the temperature range from 5 to 60 °C were conducted using weight loss and electrochemical methods. The corrosion rate increased in proportion to the concentration of aggressive anions and with increasing temperature. At lower concentrations of aggressive anions and temperatures, the corrosion rate was lower and the corrosion potential was higher, at intermediate concentrations and temperatures, the corrosion rate increased logarithmically with decreasing potential, and at higher concentrations and temperatures, the corrosion rate was higher and the potential was lower. The corrosion behavior in potable water can be determined by the balance between inhibitive action of oxygen (passive film formation) and aggressive action of Cl and ions.  相似文献   

13.
The electrochemical behavior of carbon steel in saltwater saturated with CO2 with/without an new synthesized imidazoline inhibitor was studied using polarization and electrochemical impedance spectrum (EIS), and the inhibitive ability of the inhibitor was evaluated by weight-loss method in 298-328 K temperature range. Results showed that the inhibition efficiency is up to above 80%, and imidazoline is a kind of mixed-type inhibitor. It was seen that the adsorption of imidazoline on Q235 steel can be fitted to Frumkin isotherm equation. Quantum chemistry calculation results show that the imidazoline ring and heteroatoms are the active sites of the inhibitors.  相似文献   

14.
The inhibition effect of Tween-20 as a nonionic surfactant on the corrosion of cold rolled steel (CRS) in 1.0-8.0 M HCl has been studied at different temperatures (20-50 °C) by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the CRS surface conditions. The results show that Tween-20 is a good inhibitor in 1.0 M HCl, and the inhibition efficiency (IE) increases with the inhibitor concentration, while decreases with increasing the hydrochloric acid concentration and temperature. Effect of immersion time was also studied and discussed. The adsorption of inhibitor on the CRS surface obeys the Langmuir adsorption isotherm equation. Both thermodynamic and kinetic parameters have been obtained by adsorption theory and kinetic equations. The inhibition effect is satisfactorily explained by the parameters. Polarization curves show that Tween-20 is a mixed-type inhibitor in hydrochloric acid. The results obtained from weight loss and polarization are in good agreement, and Tween-20 inhibition action could also be evidenced by surface AFM images.  相似文献   

15.
The corrosion inhibition properties of newly synthesized 1-(2-pyrrole carbonyl)-benzotriazole (PCBT) and 1-(2-thienyl carbonyl)-benzotriazole (TCBT) in combination with the non-ionic surfactant Triton X-100 (TX-100) on metallic copper were studied in ground water environment and the results were compared with benzotriazole (BTA). Various electrochemical studies such as open circuit potential (OCP), potentiodynamic polarization, ac impedance and cyclic voltammetric (CV) were made. Surface analytical techniques like FT-IR and XRD were also performed. The results indicated that PCBT is a better corrosion inhibitor for copper and the formulation consisting of PCBT and TX-100 offered improved inhibition efficiency (IE) in a synergistic manner.  相似文献   

16.
G.A. Zhang 《Corrosion Science》2010,52(8):2716-2724
The flow-accelerated corrosion (FAC) of an X65 pipeline steel was investigated in a CO2-saturated formation water by electrochemical measurements and computational fluid dynamics (CFD) simulation on micro-electrodes installed on an impingement jet system. The surface morphology of the electrodes after corrosion test was characterized by scanning electron microscopy. Results demonstrated that the role of fluid hydrodynamics in FAC of the steel depends on its effect on the carbonate corrosion scale formed on the electrode surface. An increasing flow velocity and shear stress would thinner, degrade or even remove completely the scale, increasing corrosion of the steel. An oblique impact of fluid would generally result in a high corrosion rate of the steel. The effect of impact angle on corrosion of the steel is attributed to the distribution of fluid flow field and shear stress on the electrode surface. At the normal impact, a low flow velocity and shear stress and thus a low mass transfer rate would be generated at the centric region. Consequently, a compact corrosion scale can be formed on the electrode surface to protect the steel from corrosion. The highest corrosion rate is observed on micro-electrodes that are adjacent to the center, with the highest flow velocity and shear stress. At the oblique impact angles, the fluid flow velocity and shear stress, and the corrosion rate of the micro-electrodes are higher at the side far away from the nozzle than those at the side close to nozzle. The corrosion activity of the steel electrode located at the center of the sample holder generally increases with the decreasing impact angle due to the enhancing shear effect on the corrosion scale.  相似文献   

17.
T. Balusamy 《Corrosion Science》2010,52(11):3826-3834
The influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 409 grade stainless steel in 0.6 M NaCl was studied. SMAT using 2 mm ∅ 316L stainless steel (SS) balls for 15, 30 and 45 min and 5 mm ∅ balls for 15 min offers a better corrosion protective ability. In contrast, treatment using 5 mm ∅ balls for 30 and 45 min and by using 8 mm ∅ balls for 15, 30 and 45 min, induces microstrain and defect density that results in a decrease in corrosion resistance.  相似文献   

18.
The inhibition effect of methyl violet (MV) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution at 20-50 °C was studied by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) methods. The results show that MV is an excellent inhibitor even with very low concentration, and the adsorption of MV on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves reveal that MV behaves as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability. The inhibition action of MV is also evidenced by SEM.  相似文献   

19.
The synergistic inhibition effect of rare earth cerium(IV) ion (Ce4+) and sodium oleate (SO) on the corrosion of cold rolled steel (CRS) in 3.0 M phosphoric acid (H3PO4) has been investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) methods. The results reveal that SO has a moderate inhibitive effect and its adsorption obeys Temkin adsorption isotherm. Ce4+ has a poor effect. However, incorporation of Ce4+ with SO improves the inhibition performance significantly, and exhibits synergistic inhibition effect. SO acts as a cathodic inhibitor, while SO/Ce4+ mixture acts as a mixed-type inhibitor.  相似文献   

20.
The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号