首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of alloying Sn, Pb, As, Sb and P on the dezincification of commercial brass 60Cu-39Zn-1Pb has been investigated in 1% CuCl2 solution by immersion studies and electrochemical measurements. Specimens with a smooth surface finish exhibited more resistance to dezincification. Appreciable inhibitive effect on dezincification was observed for the 55Cu-40Zn-3Pb-2Sn brass composition. The galvanic coupling of lead phase with the matrix accelerated corrosion. To improve the dezincification resistance of the Sn containing brass, As, Sb and P were added at two different levels (0.05% and 0.1%). Brass of composition 48.95Cu-45Zn-5Pb-1Sn-0.05As was more resistant indicating the synergistic effect of Sn and As. The effect of 0.05 and 0.1% of arsenic addition with various concentrations of zinc was also studied. The alloy of composition 57.90Cu-40Zn-2Pb-0.1As showed better corrosion resistance than the alloy containing 1% Sn and 0.05% As (48.95Cu-45Zn-5Pb-1Sn-0.05As). To understand the influence of Sn and As on the dezincification of commercial brass, linear polarization and cyclic voltammetry experiments were conducted for the alloys 60Cu-39Zn-1Pb, 55Cu-40Zn-3Pb-2Sn and 57.90Cu-40Zn-2Pb-0.1As. Linear polarization measurements indicated that the alloys 55Cu-40Zn-3Pb-2Sn and 57.90Cu-40Zn-2Pb-0.1As possessed higher resistance to corrosion than commercial brass. Inspection of cyclic voltammograms revealed that the peak current densities as well as the passive current density were lower for the alloys 55Cu-40Zn-3Pb-2Sn and 57.90Cu-40Zn-2Pb-0.1As than the alloy 60Cu-39Zn-1Pb. The surface layer on the alloys 60Cu-39Zn-1Pb, 55Cu-40Zn-3Pb-2Sn and 57.90Cu-40Zn-2Pb-0.1As after immersion of 72 h in 1% CuCl2 solution were analyzed by X-ray diffraction and scanning electron microscopy. Higher enrichment of Sn and As at the interface of surface layer and metal was indicated for the alloys 55Cu-40Zn-3Pb-2Sn and 57.90Cu-40Zn-2Pb-0.1As, respectively.  相似文献   

2.
The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion.  相似文献   

3.
添加微量Sc、Zr对超高强铝合金微观结构和性能的影响   总被引:1,自引:0,他引:1  
采用低频电磁铸造技术制备Al-9Zn-2.8Mg-2.5Cu-x Zr-y Sc(x=0,0.15%,0.15%;y=0,0.05%,0.15%)合金,借助金相显微镜、扫描电镜、透射电镜、力学性能测试等手段分别对其均匀化、热挤压态、固溶态和时效态的组织与性能进行对比分析。结果表明:添加微量Sc和Zr,会在凝固过程中形成初生Al3(Sc,Zr),可显著细化合金铸态晶粒;均匀化时形成的次生Al3(Sc,Zr)粒子可以强烈钉扎位错和亚晶界,有效抑制变形组织的再结晶,显著提高合金的力学性能。与不含Sc、Zr的合金相比,含0.05%Sc和0.15%Zr的合金经固溶处理和峰值时效处理后其抗拉强度和屈服强度分别提高172 MPa和218 MPa,其强化作用主要来自含Sc、Zr化合物对合金起到的亚结构强化、析出强化和细晶强化。  相似文献   

4.
Surface melting of a magnesium alloy, ZE41 (4%-Zn, 1%-RE) was performed to achieve electrochemical homogeneity at the surface by microstructure refinement. Large secondary precipitates are particularly known to cause severe pitting in magnesium alloys. The corrosion resistance of the laser treated and untreated alloy was investigated by potentiodynamic polarisation and electrochemical impedance spectroscopy. Contrary to the reported behaviour of other magnesium alloys (such as AZ series alloys), laser surface melting did not significantly improve the corrosion resistance of ZE41. This observation is attributed to the absence of beneficial alloying elements such as Al in ZE41 alloy.  相似文献   

5.
Films of MgY and MgGd alloys were deposited on silicon wafers by magnetron sputtering. The microstructure, crystal structure and mechanical properties were evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and tensile testing. Corrosion was evaluated for immersion in 3.5% NaCl solution saturated with Mg(OH)2. TEM, SEM and XRD indicated that the alloys were single phase. There was no significant change of corrosion rate with alloy content. The strength increased with alloying content, and ductility decreased concomitantly. Strengthening was consistent with solid solution strengthening or short-range order.  相似文献   

6.
The extruded Mg-6Li-4Zn-xMn (x = 0, 0.4, 0.8, 1.2 wt%) alloys were prepared, and the microstructure of the test alloys was investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. The corrosion properties were determined by electrochemical measurements and immersion measurements in 3.5% NaCl solution. The results indicate that the extruded Mg-6Li-4Zn-xMn alloys are mainly composed of α-Mg phase, β-Li phase, Mn precipitates and some intermetallic compounds (MgLi2Zn). With the addition of Mn, stable corrosion products were formed on the surface of the test alloy, which can effectively inhibit further corrosion progress and improve the corrosion resistance. Mg-6Li-4Zn-1.2Mn alloy exhibits the best corrosion resistance, attributed to grain refinement, the improvement of the stability of corrosion product film and uniform distribution of fine second phases.  相似文献   

7.
This paper investigates the effect of alloying elements on the characteristics of intermetallic phases in Zr-containing and Cr-containing 7xxx Al-Zn-Mg-Cu alloys at overaged conditions. Four Al-Zn-Mg-Cu alloy plates with different alloying element contents were studied by optical microscopy based image analysis, differential scanning calorimetry, scanning electron microscopy combined with energy disperse X-ray spectroscopy and transmission electron microscopy. The grain structures, recrystallisation, intermetallic phases and precipitates in the selected alloys have been analyzed and the presence of coarse intermetallic phases has been interpreted using established phase diagrams. The different effects of Zr or Cr addition to the alloys have been compared. The experimental results showed that the recrystallised area fraction of Zr-containing alloys is less than that of Cr-containing alloys, being attributable to Zr reducing recrystallisation more effectively than Cr. The detected particles are mainly S phase, Al7Cu2Fe, as well as dispersoids of Al3Zr for Zr-containing alloys and Cr-rich E phase for Cr-containing alloys. These coarse particles, especially the S phase which cannot be dissolved during solution treatment, are detrimental to the fracture toughness of the alloys.  相似文献   

8.
Borides have been widely used in cast TiAl alloy for grain refinement and a variety of stoichiometry and crystal structure of borides were reported. Here the effects of alloying elements Nb, Ta, and Mn on the structural stability of fine boride precipitates in TiAl alloys have been studied combining transmission electron microscopy (TEM) and first-principles calculations. The results show that most boride particles have the TiB stoichiometry. In the alloy containing Nb and Mn, all the TiB particles have the B27 structure and are highly enriched with Nb but depleted with Mn. In the alloy containing Nb and Ta, however, the intergrowth of Bf and B27 structure has been observed, and the TiB particles are enriched with both Nb and Ta. First-principles calculations reveal different effects of Nb, Ta, and Mn on the structural stability of TiB polymorphs. Nb stabilizes B27 but destabilizes Bf. Ta strongly stabilizes both B27 and Bf structures. Mn strongly destabilizes both B27 and Bf structures.  相似文献   

9.
Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.  相似文献   

10.
This study has focused on the morphology and distribution of inclusions and precipitates modified by rare earth (RE) elements, which has a decisive influence on microstructure, corrosion properties and impact behaviors in Q355 low alloy steel. Characterized by the method of electrolytic extraction and ASPEX-scanning electron microscopy (ASPEX-SEM), small-sized spherical RE inclusions have been modified to replace elongated MnS and large-sized Al2O3. Q355RE steel after RE alloying has lower corrosion rate and higher value of α/γ, due to the formation of stable and dense rust layers. Q355RE steel also exhibits better resistance to fracture at low temperature, owing to the presence of RE modification to inclusions and its effects on reducing crack initiation and propagation. Nano-scale RE precipitates containing sulfur and phosphorus is observed along grain boundaries by transmission electron microscopy (TEM). The purification of grain boundaries by RE is beneficial to the improvement of corrosion and impact properties.  相似文献   

11.
采用传统重力铸造法制备了Mg-3Zn-1Y-xZr (x=0,0.2,0.4,0.6)合金,并通过光学显微镜(OM)、扫描电镜(SEM)、失重和电化学实验研究了Zr含量对Mg-3Zn-1Y显微组织和腐蚀行为的影响.结果 表明:Mg-3Zn-1Y主要由α-Mg基质和Mg3YZr6(Ⅰ)相组成,Zr的加入没有改变第二相的类...  相似文献   

12.
The pitting corrosion behaviour of two new spray formed alloys, designated OX24 and OX27, has been compared with spray formed AA7034 and more corrosion resistant AA5083 by polarisation tests. The new alloys have been designed for use in the aerospace industry where good corrosion resistance and specific mechanical properties are required. OX24 and AA5083 had good corrosion resistance; OX27 pitted immediately showing poor corrosion resistance. However, both OX24 and OX27 show better corrosion resistance than AA7034. Scanning electron microscopy showed that corrosion was associated with intermetallic particles, except in OX24 where initiation appeared not to be associated with the Zr-rich intermetallics.  相似文献   

13.
The stress corrosion cracking (SCC) of high strength and ductility Mg–Zn–Mn alloys containing Si was studied using the slow strain rate test (SSRT) technique in air and in 3.5 wt% NaCl solution saturated with Mg(OH)2. All alloys were susceptible to SCC to some extent. The fractography was consistent with a significant component of intergranular SCC (IGSCC). The TGSCC fracture path in ZSM620 is consistent with a mechanism involving hydrogen. In each case, the IGSCC appeared to be associated with the second-phase particles along grain boundaries. For the IGSCC of the ZSM6X0 alloys, the fractography was consistent with micro-galvanic acceleration of the corrosion of -magnesium by the second-phase particles, whereas it appeared that the second-phase particles themselves had corroded. The study suggests that Si addition to Mg–Zn–Mn alloys can significantly improve SCC resistance as observed in the case of ZSM620. However, the SCC resistance also depends on the other critical alloying elements such as zinc and the microstructure.  相似文献   

14.
Surface alloying of commercially pure titanium was carried out with an electron beam (EB) apparatus using a boron nitride powder which was previously deposited on its surface by Atmospheric Plasma Spraying (APS) in order to produce a composite layer with high wear resistance.Electron beam surface alloying is an important surface engineering routine that involves melting of a pre-deposited layer or concomitantly added alloying elements/compounds with a part of the underlying substrate by direct energy electron beam irradiation to form an alloyed zone characterized by a novel microstructure and composition.The present study is concerned with the influences of EB-remelting process on the wear resistance of the alloyed titanium material. The microstructure, corrosion resistance and phase analysis were also examined. Scanning electron microscopy (SEM), light microscopy (LM) and X-ray Diffraction (XRD) were performed to characterize the phase modification and morphology after the EB treatment. The sliding wear as well as the hardness of the remelted material was significantly improved (in comparison with pure Ti) through this alloying technique. The corrosion behaviour of the modified surfaces was compared with that of Ti in order to demonstrate that its initial good corrosion resistance is not strongly influenced due to surface alloying.  相似文献   

15.
Bronzes with an enhanced (14 wt %) tin content which were alloyed with titanium, zirconium, and boron have been studied in the as-cast, homogenized, and deformed states by scanning and transmission electron microscopy and X-ray diffraction analysis. These alloys are of interest as a matrix material for superconducting Nb/Cu-Sn composites in which the high tin content and the alloying of the bronze matrix make it possible to improve superconducting characteristics at the expense of optimization of the structure and properties of layers of the Nb3Sn compound formed at the niobium-bronze interface via reactive diffusion. The distribution of alloying elements in different states of the bronze has been investigated. It has been shown that Zr is uniformly distributed in the alloy and forms no coarse inclusions, whereas Ti forms in the as-cast state large platelike precipitates that can adversely affect technological characteristics of the bronze matrix and the composite as a whole.  相似文献   

16.
The corrosion behaviour of Al-5Zn-0.02In-1Mg-0.05Ti (wt.%) alloy was investigated by EIS, SEM and EDX. The results show that there exist different corrosion stages of the alloy in 3.5% NaCl solution with increasing time. At the initial stages, pits predominates the corrosion around precipitates with a typical inductive loop at low frequencies in EIS. In the late corrosion, a relative uniform corrosion predominate the corrosion process controlled by the dissolution-precipitation of the In and Zn ions and characterized by the second capacitive loop at low frequencies in EIS. The mud structure appears on the corrosion surface of the alloy.  相似文献   

17.
In this study, the microstructure, mechanical properties and corrosion behaviors of a Zn–1.6 Mg(wt%) alloy during multipass rotary die equal channel angle pressing(RD-ECAP) processing at 150 °C were systematically investigated. The results indicated that a Zn + Mg_2 Zn_(11) + MgZn_2 ternary eutectic structure was formed in as-cast Zn–Mg alloy. After ECAP, the primary Zn matrix turned to fine dynamic recrystallization(DRX) grains, and the network-shaped eutectic structure was crushed into fine particles and blended with DRX grains. Owing to the refined microstructure, dispersed eutectic structure and dynamically precipitated precipitates, the 8 p-ECAP alloy possessed the optimal mechanical properties with ultimate tensile strength of 474 MPa and elongation of 7%. Moreover, the electrochemical results showed that the ECAP alloys exhibited similar corrosion rates with that of as-cast alloys in simulated body fluid, which suggests that a high-strength Zn–Mg alloy was successfully developed without sacrifice of the corrosion resistance.  相似文献   

18.
Abstract

The wear and wear corrosion resistance behaviour of Al–20Si–XPb–YCu (X=0–10 wt-%, Y=0–3 wt-%) alloys fabricated by a powder metallurgy (PM) technique and subsequent heat treatments were evaluated by a block on ring tribotest. The microstructure of all aluminium alloys was observed by optical microscopy and scanning electron microscopy with X-ray energy dispersive spectroscopy. The effects of applied potentials and environments including dry air and 3.5 wt-%NaCl aqueous solution were studied. The results of microstructure analysis indicated that Pb exhibited a bimodal distribution in the Pb containing alloys, and Cu particles become to form the intermetallic phase CuAl2. Furthermore, the hardness rises significantly for both Pb and Cu containing alloys only after solid solution quenching treatment. The wear and corrosion results showed that the addition of both lead and copper would improve the wear resistance but lead to a higher corrosion rate whereas heat treatment had a beneficial effect of reducing the corrosion rate of most alloys with the exception of Al–Si alloy. Furthermore, by comparison of all alloys after heat treatment, the wear corrosion resistance of Al–Si alloy was inferior to the other alloys; consequent additions of Pb and Cu further improved its wear corrosion resistance. Moreover, at an anodic potential, the wear corrosion rate and current density of both Al–Si and Al–Si–Cu alloys containing particle Pb decrease significantly owing to a corrosion product layer composed of Al, O and Pb elements.  相似文献   

19.
1 INTRODUCTIONMany researches show that the properties ofaluminum and its alloys can be remarkablyi mproved withreasonable rare earth additions .Theactions of rare earth elements in the aluminumalloys consist in alterant-agent , micro-alloying andso on[1 3].By far element scandiumis the most ef-fective rare earth element which i mproves thealuminum alloys properties[4 6]. However , theprice of scandiumis very high.Therefore ,it s veryessential to find a new rare earth element , whichacts …  相似文献   

20.
The corrosion behaviours of Mg-3Nd-0.2Zn (wt.%) (NZ) and Mg-3Nd-0.2Zn-0.4Zr (wt.%) (NZK) alloys were investigated in as-cast (F), solution-treated (T4) and artificially-aged (T6) conditions in 5% NaCl solution using immersion test and electrochemical measurements. The immersion test indicates that both NZ and NZK alloys exhibit better corrosion resistances in T4 and T6 states than in the F condition due to the galvanic corrosion between the cathodic Mg12Nd compound and the anodic α matrix in the F condition. The NZK alloy demonstrates lower corrosion rates than the NZ alloy in three conditions, which indicates that the addition of zirconium has a beneficial effect on the corrosion resistance. It was discovered by field emission scanning electron microscope (FE-SEM) that the corrosion products of NZK-T6 formed in salt solution are composed of sandwich shape compounds, while that of NZ-T6 is composed of fine needle-like compounds and small particles. The former are more uniform and compact than the latter and can play a more protective role for the alloy. Electrochemical measurements also confirmed that the more protective film formed on the NZK than on the NZ alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号