首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the flash technique, the thermal diffusivity of iron oxide has been measured as a function of time at temperatures ranging from 623 to 753 K to study the isothermal decomposition of wustite to magnetite and iron. The results are briefly discussed in terms of transformation kinetics and it is shown that the data are consistent with the growth of a fixed number of nuclei, all of which are present at the start of transformation.  相似文献   

2.
An apparatus for the simultaneous absolute measurement of the thermal activity, thermal diffusivity, thermal conductivity, and heat capacity of nonconducting liquids with the AC heated-wire (strip) technique is described. The main advantage of this technique is that the temperature oscillations field can be confined around the sensor in a liquid layer thin enough to suppress the hydrodynamic currents. This leads to the elimination of the convective heat transport. Carrying measurements at different frequencies, the inertia of the sensor can be considered, and the radiative heat transport can be estimated for liquids with known optical properties. The apparatus was constructed and tested using six different liquids in a limited temperature range. The thermal properties of these liquids at 20°C are reported. The thermal conductivity data of toluene and n-heptane (recommended as proposed thermal conductivity standards) are given in the temperature range 10–40°C. Good agreement was found with data reported by other investigators at 20°C, but there is still a considerable discrepancy in the temperature coefficient of thermal conductivity.  相似文献   

3.
分别采用排水法、闪光法和比较法测定了55CrMo钢的室温密度、热扩散率和比热容,并计算得出了该钢的导热系数。结果表明:随着温度的升高,55CrMo钢的比热容总体上呈上升趋势,而热扩散率和导热系数则以相反趋势变化,且该三个热物性参数均在相变区内有所波动;测定结果为开展55CrMo钢感应加热淬火过程的有限元模拟提供了重要的试验数据。  相似文献   

4.
Various aspects of the importance of thermophysical property (TPP) studies to science and technology in China are discussed. Several stages of the development of experimental principles and equipment are described. Some examples of TPP applications in economic practice are presented. Theoretical and methodological studies in this field are summarized. The presentations are limited mostly to work on solids.Invited paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

5.
A method for the simultaneous measurement of thermal diffusivity and specific heat by a single rectangular heating pulse on a finite cylindrical specimen is described. The method takes into account radiation losses from all the surfaces of the specimen. The theoretical principle of the technique was studied by solving the transient heat conduction equation for a finite disk heated on the front surface by a single rectangular radiant energy pulse. An apparatus was constructed to comply with the theoretical conditions and was connected to a personal computer. Thermal diffusivity and specific heat were determined from the data obtained on the temperature response of the back surface of the specimen and from the theoretical results. This method can be applied to materials having a wide range of thermal conductivity values and has a good accuracy at high temperatures. Examples of the measurements are presented.Invited paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

6.
Several recent advances made in the author's laboratory in the experimental apparatus and measuring procedures for precise measurements of thermophysical properties by the laser-flash method are reviewed. Heat-capacity measurement has been done on metals and ceramics within an accuracy of ±0.5% in the range from 80 to 800 K, and within ±2% from 800 to 1100 K. Thermal diffusivity has been also measured from 80 to 1300 K with reasonable corrections for heat leak and finite pulse width. As an example of the experimental results by the method, the data of heat capacity, thermal diffusivity, and thermal conductivity of vanadium-oxygen alloys containing 1.07 and 3.46 at.% of oxygen from 80 to 800 K are presented and compared with those of pure vanadium metal.Presented at the Japan-United States Joint Seminar on Thermophysical Properties, October 24–26, 1983, Tokyo, Japan.  相似文献   

7.
陈中华  王建川  余飞  张正国  高学农 《功能材料》2015,(1):1125-1128,1134
首先采用Hummers法制备出氧化石墨烯(GO),然后与三聚氰胺、甲醛进行原位聚合,制备出GO/密胺树脂(MF)复合材料,并用傅里叶红外光谱仪(FT-IR)、原子力显微镜(AFM)、扫描电镜(SEM)分析和观察了氧化石墨烯及复合材料的分子结构及形貌,通过导热系数测试仪、热重分析仪(TG)对复合材料的热性能进行了表征。研究发现,随着氧化石墨烯(GO)添加量的增加,复合材料导热系数增加先快后慢,当GO添加量为0.84%时,复合材料导热系数提高32.0%,GO的添加提高复合材料低温下的热稳定性。  相似文献   

8.
A method and an instrument for the measurement of a number of the thermophysical properties (thermal conductivity, thermal activity, volumetric specific heat, thermal diffusivity) are described. The results obtained for thermal conductivity and specific heat of toluene, over a temperature range 30–350°C and pressures of up to 30 MPa, are presented.  相似文献   

9.
This paper presents the measurements and the results on thermal and electrical transport properties of three nuclear reactor cladding materials: Zircalloy 2, Zircalloy 4, and Inconel 625. Study of these materials constituted a part of the IAEA coordinated research program aimed at the generation and establishment of a reliable and complete database of the thermal properties of reactor materials. Measured properties include thermal diffusivity, specific heat, and electrical resistivity. Thermal diffusivity was measured by the laser pulse technique. Specific heat and electrical resistivity were measured using a millisecond-resolution direct electrical pulse heating technique. Thermal conductivity was computed from the experimentally determined thermal difusivity and specific heat functions and the room temperature density values. Measurements were performed in the 20 to 1500°C temperature range, depending on the material and property concerned.  相似文献   

10.
The purpose of this study is to develop measuring methods for the thermal diffusivity, the specific heat capacity, and the density of molten salts, as well as to measure these properties of mixtures of alkaline carbonate salts. The thermal diffusivity is measured by the stepwise heating method. The sample salt is poured into a thin container, and as a result, a three-layered cell is formed. The thermal diffusivity is obtained from the ratio of temperature rises at different times measured at the rear surface of the cell when the front surface is heated by the stepwise energy from an iodine lamp. The specific heat capacity is measured using an adiabatic scanning calorimeter. The density is measured by Archimedes' principle. Thermal conductivity is determined from the above properties. Measured samples are Li2CO3-K2CO3 (42.7–57.3, 50.0-50.0, and 62.0-38.0 mol%).Invited paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

11.
The errors in measuring the thermal diffusivity by the plane thermal wave method are considered as a function of the thermal flux power density. The minimum values of the thermal flux power density required for measurements with a specified error and the optimum parameters of the samples and of the heat source are determined. __________ Translated from Izmeritel’naya Tekhnika, No. 8, pp. 44–46, August, 2007.  相似文献   

12.
The specific heat and thermal conductivity measurements of YBa2Cu3O7– high-T c superconductors were performed by an a.c. calorimetry method. Investigations of the specific heat of YBa2Cu3O7– ceramics in magnetic fields show that an increase in the magnetic field reduces the jump in the specific heat, broadens the transition region, and shifts the transition temperature downward by about 0.5 K, Temperature dependence of the specific heat of a YBa2Cu3O7– high-T c superconducting ceramic reveals that fluctuation affect the specific heat near the superconducting transition, Critical exponents = = 0.5, the critical amplitudesC + =C = 0.5 J · mol–1 K–1, the space dimensionalityd = 3, and the number of components in the order parametern = 3 is calculated, The specific heat and the along-c-axis thermal conductivity of YBa2Cu,3O7– single crystal were simultaneously measured.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder. Colorado, U.S.A.  相似文献   

13.
The thermal conductivities of three plasma-sprayed cermets have been determined over the temperature range 23–630°C from the measurement of the specific heat, thermal diffusivity, and density. These cermets are mixtures of Al and SiC prepared by plasma spray deposition and are being considered for various applications in magnetic confinement fusion devices. The samples consisted of three compositions: 61 vol% Al/39 vol% SiC, 74vol% Al/26vol% SiC, and 83 vol% Al/17 vol% SiC. The specific heat was determined by differential scanning calorimetry through the Al melt transition up to 720°C, while the thermal diffusivity was determined using the laser flash technique up to 630°C. The linear thermal expansion was measured and used to correct the diffusivity and density values. The thermal diffusivity showed a significant increase after thermal cycling due to a reduction in the intergrain contact resistance, increasing from 0.4 to 0.6 cm2·–1 at 160°C. However, effective medium theory calculations indicated that the thermal conductivities of both the Al and the SiC were below the ideal defect-free limit even after high-temperature cycling. The specific heat measurements showed suppressed melting points in the plasmasprayed cermets. The 39 vol% SiC began a melt endotherm at 577°C, which peaked in the 640–650°C range depending on the sample thermal history. Chemical and X-ray diffraction analysis indicated the presence of free silicon in the cermet and in the SiC powder, which resulted in a eutectic Al/Si alloy.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

14.
Thermal conductivity and thermal diffusivity are simultaneously measured for a collection of diorite samples taken from Shewa-Shahbaz Garhi volcanic complex near Mardan, Pakistan by using the transient plane source (TPS) technique. The temperature dependence of the transport properties of these samples is studied in the temperature range from 253 to 333 K. Different relationships for the temperature dependence of the thermal conductivity and thermal diffusivity are tested. The samples are also characterized by their chemical composition, density, porosity, and specific gravity at room temperature and atmospheric pressure. Theoretical calculation of the specific gravity parameter based on the chemical composition is in good agreement with the experimental observation. No correlation was found for the temperature dependence of the thermal transport behavior on porosity, chemical composition, and density.  相似文献   

15.
The thermal conductivity of partially stabilized zirconia was measured over the temperature range 320–1273 K using the radial heat flow method. The data have an absolute uncertainty of about ±2% and repeat measurements showed no evidence of changes in the thermal conductivity at high temperatures. This also was true for the thermal diffusivity data, which were obtained in vacuum over the temperature range 300–1473 K. Both sets of thermal conductivity data pass through minima at high temperatures. Quantitative differences were observed in the temperatures and thermal conductivities of the two minima. The results were analyzed by assuming parallel conduction by phonons and photons, and the phonon component was identified by fitting lower-temperature data. Extrapolating this curve allowed identification of the photon contribution to the thermal conductivity at high temperatures. The photon contribution approached a T 3 function and was larger in the thermal conductivity specimens. The difference in the photon contributions correlates with changes in the optical properties of the samples produced during the high temperature measurments.  相似文献   

16.
提拉法生长了Nd^3+:Gd3Ga5O12(Nd:GGG)单晶,用差示扫描量热法(DSC)和激光脉冲法分别测量了Nd:GGG激光晶体的比热和热扩散系数,计算得到晶体的导热系数,与用PPMS测量得到的导热系数相吻合.实验结果表明:Nd:GGG激光晶体具有较大的比热和导热系数,具有良好的热物理性能;Nd:GGG晶体的热扩散系数和导热系数随着温度的升高而减小;计算得到晶体的德拜温度为711K.  相似文献   

17.
High-temperature fluids often show interesting behavior and have important industrial applications, however, their thermophysical properties are extremely difficult to measure. Sometimes there are no measuring methods available, despite the fact that the great industrial demand for data on these property data at high temperatures is intense in recent years. In the present paper, five examples of approaches to measure transport properties of high temperature fluids are described. They include measurements of the viscosity of high-temperature melts by the oscillating-cup method, of the viscosity of vapors of H2O and D2O by the capillary method, of the thermal conductivity of molten salts by the transient hot-wire method, and of the thermal diffusivity by the optical method and of the thermal conductivity of high temperature gases by the shocktube method.  相似文献   

18.
The thermal transport properties of four commercially available AlN substrates have been investigated using a combination of steady-state and transient techniques. Measurements of thermal conductivity using a guarded longitudinal heat flow apparatus are in good agreement with published room temperature data (in the range 130–170 W · m–1 · K–1). Laser flash diffusivity measurements combined with heat capacity data yielded anomalously low results. This was determined to be an experimental effect for which a method of correction is presented. Low-temperature measurements of thermal conductivity and heat capacity are used to probe the mechanisms that limit the thermal conductivity in AlN.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

19.
The results of an inter laboratory comparison of thermal conductivity, thermal diffusivity, specific heat capacity, and thermal expansion measurements on austenitic stainless steel in the temperature range between 20 and 1000°C are presented here. Mean values are presented for the physical properties studied. Reliable relative expanded uncertainties can be stated for the properties determined, which were achieved by applying good measurement practice, i.e., 3% for thermal expansion, 5% for specific heat capacity and thermal diffusivity, and 6% for thermal conductivity. The mean values derived from this intercomparison agree well with the results of a previous intercomparison in 1990. An erratum to this article is availabale at .  相似文献   

20.
Results of an intercomparison of measurements of thermal conductivity, thermal diffusivity, specific heat capacity, and density of polymethyl methacrylate (PMMA) in the temperature range between –70°C and +80°C are presented. The purpose of this comparison is to investigate the variability of the results among guarded hot-plate (GHP) and guarded heat-flow meter (GHF) techniques on the one hand and among GHP/GHF and other measuring instruments on the other. The primary objectives are to characterize the material properties mentioned and to quantify the effects of thermal contact resistances and temperature measurements. With regard to future use of PMMA as a reference material, reference data for the thermal conductivity are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号