首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出了一个E/D型结构集成电路中增强型和耗尽型调制掺杂Ga_(1-x)Al_xAs-GaAs异质结二维电子气场效应晶体管(MODFET)模型,并系统地分析了它们的材料选取和结构参数。便于相容性工艺制造,增强型晶体管用三层结构;耗尽型晶体管用四层结构。计算方法主要应用了二维电子气散射理论,Joyce-Dixon近似,以及泊松方程等。文内给出了主要计算结果。  相似文献   

2.
本文研究n沟金属-氧化物-半导体场效应晶体管(MOSFET’s)的栅氧化层的击穿特性。由于受导电沟道横向电场产生的沟道大电流的影响,MOSFET’s的栅氧化层的动态击穿场强远低于有相同栅氧化层的MOS电容器的静态击穿场强。耗尽型MOSFET’s的栅氧化层动态击穿场强主要由漏-源穿通电压决定,而增强型器件主要由深耗尽层击穿电压决定。无论是耗尽型还是增强型器件,栅电压在一定范围内增加时,栅氧化层动态击穿场强下降。  相似文献   

3.
耗尽型和F等离子体处理增强型高电子迁移率晶体管(HEMT)被集成在同一圆片上。增强型/耗尽型 HEMT反向器、与非门以及D触发器等直接耦合场效应晶体管逻辑电路被制作在AlGaN/GaN异质结上。D触发器在GaN体系中首次被实现。在电源电压为2伏的条件下,增强型/耗尽型反向器显示输出逻辑摆幅为1.7伏,逻辑低噪声容限为0.49伏,逻辑高噪声容限为0.83伏。与非门和D触发器的功能正确,证实了GaN基数字电路的发展潜力。  相似文献   

4.
在制造大规模集成电路的工艺中,P沟道MOS已成为工业产品的标准件。P沟道之所以比N沟道占优势,是由于P沟道工艺中的二氧化硅表面性质可被控制,易于掌握。表面态密度加工的典型差别(它引起P沟道晶体管阈值电压的不同)常常使N沟道晶体管从增强型转变为耗尽型。N沟道MOS场效应管在理论上虽能提供良好的特性,但P沟道MOS场效应管由于能重现增强型的特性,因此它成为研制数字集成电路的基础。  相似文献   

5.
提供了一种分析MOST模型,模型包含弱反型和短沟道效应,精确测量了沟道长度小至1μm的MOST特性。根据这模型精确地预言出大规模集成电路最佳的E/D倒相器性能极限是:L=0.3μm,V_(DD)=0.5V Ptd=0.5fJ 最佳例相器结构如图1所示,增强型器件的沟道长度Le和耗尽型器件的宽度Wd等于最小特征尺寸L,为减小倒相器的作用面积,几何尺寸比β选择为β~(1/2)=We/Le=Ld/Wd,增强型离子注入时,耗尽型被掩蔽着,结果负载衬底偏置的灵敏度较小。因为注入区是很浅的(~1000(?))而且5沟道截止P~+区  相似文献   

6.
Ohno  T 于向东 《微电子学》1989,19(5):32-36,56
我们把用SIMOX工艺所形成的纵向隔离结构和新开发的横向隔离结构结合起来,研制出抗辐照CMOS/SIMOX器件。 n沟MOSFET的纵向隔离由多层高浓度氧掺杂多晶硅和埋层二氧化硅组成,横向隔离由多层薄的侧壁二氧化硅、侧壁多晶硅和厚的场二氧化硅组成。p沟MOSFET的纵向隔离结构与n沟MOSFET相同,但其横向隔离中没有侧壁多晶硅层,而是使用厚的场二氧化硅层。高浓度氧掺杂多晶硅和侧壁多晶硅层用来屏蔽被俘获在埋层二氧化硅和场二氧化硅中的辐照感生正电荷。利用这些隔离结构和薄栅二氧化硅层开发的CMOS/SIMOX器件,即使在经受2Mrad(Si)的~(60)Co伽马射线辐照之后,仍具有良好的工作特性。  相似文献   

7.
薄膜SOI MOS器件阈值电压的解析模型分析   总被引:1,自引:0,他引:1  
研究了薄膜全耗尽增强型 SOIMOS器件阈值电压的解析模型 ,并采用计算机模拟 ,得出了硅膜掺杂浓度和厚度、正栅和背栅二氧化硅层厚度及温度对阈值电压影响的三维分布曲线 ,所得到的模拟结果和理论研究结果相吻合。  相似文献   

8.
研制了一款X波段增强型AlGaN/GaN高电子迁移率晶体管(HEMT)。在3英寸(1英寸=2.54 cm)蓝宝石衬底上采用低损伤栅凹槽刻蚀技术制备了栅长为0.3μm的增强型AlGaN/GaN HEMT。所制备的增强型器件的阈值电压为0.42 V,最大跨导为401 mS/mm,导通电阻为2.7Ω·mm。器件的电流增益截止频率和最高振荡频率分别为36.1和65.2 GHz。在10 GHz下进行微波测试,增强型AlGaN/GaN HEMT的最大输出功率密度达到5.76 W/mm,最大功率附加效率为49.1%。在同一材料上制备的耗尽型器件最大输出功率密度和最大功率附加效率分别为6.16 W/mm和50.2%。增强型器件的射频特性可与在同一晶圆上制备的耗尽型器件相比拟。  相似文献   

9.
提出了一种积累型槽栅超势垒二极管,该二极管采用N型积累型MOSFET,通过MOSFET的体效应作用降低二极管势垒。当外加很小的正向电压时,在N+区下方以及栅氧化层和N-区界面处形成电子积累的薄层,形成电子电流,进一步降低二极管正向压降;随着外加电压增大,P+区、N-外延区和N+衬底构成的PIN二极管开启,提供大电流。反向阻断时,MOSFET截止,PN结快速耗尽,利用反偏PN结来承担反向耐压。N型积累型MOSFET沟道长度由N+区和N外延区间的N-区长度决定。仿真结果表明,在相同外延层厚度和浓度下,该结构器件的开启电压约为0.23 V,远低于普通PIN二极管的开启电压,较肖特基二极管的开启电压降低约30%,泄漏电流比肖特基二极管小近50倍。  相似文献   

10.
我们设计并且制备了GaN基增强型/耗尽型(E/D 模)直接耦合6管静态随机存取存储器(SRAM)单元电路和电平转换电路。利用氟等离子处理工艺,使用适中的AlGaN势垒层厚度异质结材料,增强型和耗尽型铝镓氮/氮化镓 HEMTs被集成在了同一个晶片上。六管SRAM单元由对称的两个E/D模反相器和增强型开关管组成。在1V的工作电压下,SRAM单元电路的输出高电平和低电平分别为0.95V和0.07V。电平转换电路的工作电压为+6V和-6V,通过4个串联的镍-铝镓氮/氮化镓肖特基二极管使电压降低。通过轮流控制电平转换电路的两个反相器模块的开关状态,电平转换电路输出两路电压,分别为-0.5V和-5V。电平转换器的翻转电压为0.76V。SRAM单元电路和电平转换电路都能正确地工作,展现了氮化镓基E/D模数字和模拟集成电路的潜力。提出了几条设计上的考虑,以避免阈值电压的漂移对电路工作造成的影响。  相似文献   

11.
提出了一种新结构单片集成增强/耗尽型(E/D)InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMTs).外延层材料通过分子束外延技术生长,在室温下,其电子迁移率和二维电子气浓度分别为5410cm2/(V·s)和1.34×1012cm-2.首次提出了普通光学接触曝光分步制作增强与耗尽型的栅技术方法.研制出了单片集成E/D型PHEMTs,获得良好的直流和交流特性,最大饱和漏电流密度分别为300和340mA/mm,跨导为350和300mS/mm,阈值电压为0.2和-0.4V,增强型的fT和fmax为10.3和12.4GHz,耗尽型的fT和fmax为12.8和14.7GHz.增强/耗尽型PHEMTs的栅漏反向击穿电压都为-14V.  相似文献   

12.
提出了一种新结构单片集成增强/耗尽型(E/D)InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMTs).外延层材料通过分子束外延技术生长,在室温下,其电子迁移率和二维电子气浓度分别为5410cm2/(V·s)和1.34×1012cm-2.首次提出了普通光学接触曝光分步制作增强与耗尽型的栅技术方法.研制出了单片集成E/D型PHEMTs,获得良好的直流和交流特性,最大饱和漏电流密度分别为300和340mA/mm,跨导为350和300mS/mm,阈值电压为0.2和-0.4V,增强型的fT和fmax为10.3和12.4GHz,耗尽型的fT和fmax为12.8和14.7GHz.增强/耗尽型PHEMTs的栅漏反向击穿电压都为-14V.  相似文献   

13.
实验证明,在激光再结晶多晶硅薄膜上迭层制造MOSFET(金属氧化物半导体场效应管)是切实可行的。初始研究是在一多晶膜上采用分离栅结构获得单个增强型器件,并利用一只互补型CMOS的排列论证同时工作的晶体管和倒相作用。  相似文献   

14.
增强型与耗尽型集成VDMOS器件是LED驱动电路中一种高效、低成本的功率器件。其设计制造要解决的主要问题是两种VDMOS器件工艺的集成问题和两种器件之间的隔离问题。提出一种隔离良好、芯片面积较小的增强型与耗尽型集成VDMOS设计和制造方法,耗尽管位于增强管里面比耗尽管位于增强管外面时耗尽管芯片面积减小74%。测试结果表明500 V增强型VDMOS击穿电压BVDSS平均值为550 V,耗尽型VDMOS击穿电压BVDSX平均值为540 V,增强型VDMOS平均阈值电压VTH为3.2 V,耗尽型VDMOS平均阈值电压VP为-3.7 V,两种管子总良率在94%以上,达到预期的设计目的,并成功应用于LED等产品中。  相似文献   

15.
优化了GaAs基InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMT)的外延结构,有利于获得增强型PHEMT的正向阈值电压.采用光学接触式光刻方式,实现了单片集成0.8μm栅长GaAs基InGaP/AlGaAs/InGaAs增强/耗尽型PHEMT.直流和高频测试结果显示:增强型(耗尽型)PHEMT的阈值电压、非本征跨导、最大饱和漏电流密度、电流增益截止频率、最高振荡频率分别为0.1V(-0.5V),330mS/mm(260mS/mm),245mA/mm(255mA/mm),14.9GHz(14.5GHz)和18GHz(20GHz).利用单片集成增强/耗尽型PHEMT实现了直接耦合场效应晶体管逻辑反相器,电源电压为1V,输入0.15V电压时,输出电压为0.98V;输入0.3V电压时,输出电压为0.18V.  相似文献   

16.
适于ULSI的一种新的铜的CMP抛光液   总被引:11,自引:4,他引:7  
采用纳米级二氧化硅代替国际上惯用的三氧化二铝作磨料,解决了抛光液的悬浮问题,得到了很好的抛光表面.采用无金属离子的有机碱作络合剂及pH调制剂,使用了无金属离子的氧化剂解决了铜离子沾污问题和制约硅溶胶作磨料的凝胶问题.从而得到一种适用于甚大规模集成电路(ULSI)制备中铜互连线技术的化学机械抛光(CMP)的新型抛光液.  相似文献   

17.
优化了GaAs基InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMT)的外延结构,有利于获得增强型PHEMT的正向阈值电压.采用光学接触式光刻方式,实现了单片集成0.8μm栅长GaAs基InGaP/AlGaAs/InGaAs增强/耗尽型PHEMT.直流和高频测试结果显示:增强型(耗尽型)PHEMT的阈值电压、非本征跨导、最大饱和漏电流密度、电流增益截止频率、最高振荡频率分别为0.1V(-0.5V),330mS/mm(260mS/mm),245mA/mm(255mA/mm),14.9GHz(14.5GHz)和18GHz(20GHz).利用单片集成增强/耗尽型PHEMT实现了直接耦合场效应晶体管逻辑反相器,电源电压为1V,输入0.15V电压时,输出电压为0.98V;输入0.3V电压时,输出电压为0.18V.  相似文献   

18.
采用纳米级二氧化硅代替国际上惯用的三氧化二铝作磨料,解决了抛光液的悬浮问题,得到了很好的抛光表面.采用无金属离子的有机碱作络合剂及pH调制剂,使用了无金属离子的氧化剂解决了铜离子沾污问题和制约硅溶胶作磨料的凝胶问题.从而得到一种适用于甚大规模集成电路(ULSI)制备中铜互连线技术的化学机械抛光(CMP)的新型抛光液.  相似文献   

19.
本文提出了超低比导通电阻(Ron,sp) SOI双栅槽型MOSFET(DG Trench MOSFET)。此MOSFET的特点是拥有双栅和一个氧化物槽:氧化物槽位于漂移区,一个槽栅嵌入氧化物槽,另一个槽栅延伸到埋氧层。首先,双栅依靠形成双导电沟道来减小Ron,sp;其次,氧化物槽不仅折叠漂移区,而且调制电场,从而减小元胞尺寸,增大击穿电压。当DG Trench MOSFET的半个元胞尺寸为3μm时,它的击穿电压为93V,Ron,sp为51.8mΩ?mm2。与SOI单栅MOSFET(SG MOSFET)和SOI单栅槽型MOSFET(SG Trench MOSFET)相比,在相同的BV下,DG Trench MOSFET的Ron,sp分别地降低了63.3%和33.8%。  相似文献   

20.
在1972年国际电子器件会议上,日本富士通公司发表了一种新的半导体制造技术——掺杂多晶硅工艺,该工艺可应用于超高速集成电路和微波晶体管制作。在电流型逻辑超高速集成电路及微波晶体管中,由于电极条很窄(例如莫托洛拉公司的MECLⅢ,单门传递延迟时间1毫微秒,发射极条宽为9000埃~1微米),一般都用泡发射极工艺。亦即在形成微波晶体管及ECL电路的发射极扩散层时,由化学汽相淀积法生成掺杂氧化层,经热扩散后,由泡发射极工艺开发射极窗孔,然后形成铝电极。泡发射极工艺是利用掺杂的氧化层(掺杂SiO_2)与不含杂质的二氧化硅之间腐蚀速度的不同,从而可不采用光刻掩蔽(免去发射极光刻)直接腐蚀出发射极  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号