首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 105 毫秒
1.
为提高钢的表面硬度及耐腐蚀性,选用钛,铝机械球磨粉末在Q235钢基体表面进行激光熔覆试验,使钛,铝发生反应并制备Ti-Al金属间化合物复合涂层. 综合运用DTA、XRD和SEM分析方法对激光熔覆涂层的成分与组织进行分析,并对复合涂层的硬度及耐腐蚀性进行测试. 结果表明,机械球磨可使粉体细化,涂层与基体形成了冶金结合,涂层由Al3Ti,Al3Fe,Fe,AlN和FeO组成,同时激光熔覆涂层具有较高的硬度及优良的耐腐蚀性能. 当激光功率为1000 W,扫描速度为600 mm/min时,复合涂层同时获得最高显微硬度和耐腐蚀阻抗值,分别为949.5 HV和600 kΩ.  相似文献   

2.
激光熔覆原位合成TiC-TiB2复合涂层   总被引:4,自引:0,他引:4  
为了提高材料表面的强度及耐磨性,在Fe901自熔性合金粉末中添加了不同比例的(TiO2+B4C+C+Al)混合粉末,采用激光熔覆技术在45钢表面成功制备了TiC-TiB2增强复合涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和磨损试验机等对复合涂层的相组成、显微组织形貌及力学性能进行了分析,同时对反应体系进行了热力学计算。结果表明:复合涂层与基材呈冶金结合,无气孔、裂纹等缺陷。反应体系满足原位合成TiC和TiB2的热力学条件。涂层物相由α-Fe、TiC、TiB2和(Fe,Cr)7C3组成。细小的方块状TiC颗粒和长条状TiB2均匀弥散分布于涂层基体上,可起到进一步细化组织及沉淀强化的作用。添加(TiO2+B4C+C+Al)混合粉末后,涂层组织明显细化且树枝晶数量减少,并且随着添加量增多,组织越细小。TiC-TiB2增强复合涂层显微硬度在720~760HV0.2之间,比不含TiC-TiB2的涂层提高了30%左右,耐磨性明显提高,混合粉末添加质量分数为50%时耐磨性最好。  相似文献   

3.
钛合金表面激光熔覆原位生成TiC增强复合涂层   总被引:31,自引:2,他引:31  
利用Cr3C2和TiC生成自由能和稳定性的差异,通过激光熔化法在Ti6Al4V表面制备TiC颗粒增强钛基复合材料涂层,结果表明:选择合适的激光处理工艺,可使Cr3C2和Ti合金粉末通过原位结晶置换反应生成TiC/Ti复合材料熔覆层。亚微米级的TiC颗粒均匀地分布于复合材料的基体中,复合材料的基体组织随合金粉末的成分不同而改变。  相似文献   

4.
采用激光熔覆快速凝固技术原位合成颗粒增强Cu-4.2Cr复合涂层.研究表明,激光扫描速度过低,涂层由于重力场作用存在严重的Cu、Cr分层现象.随扫描速度的提高,激光熔池冷却速度和过冷度提高,初生相Cr呈细小颗粒状弥散分布在Cu基体上,起到了显著的弥散强化效果.硬度结果表明,涂层经500℃时效后硬度最高达到170HV,与纯铜硬度相比提高1倍以上.  相似文献   

5.
在不锈钢基材上通过激光熔覆Ni-Cr-Al-Co-Mo-W-Nb-Ti-C) WC粉末制备出WC陶瓷颗粒增强Ni-Al基复合涂层,并将试样在1 000℃高温大气氛围内保温50h.利用金相显微镜(OM)、扫描电镜(SEM)、显微硬度计对涂层高温时效前后的组织、相成分、硬度进行了对比分析和测试.结果显示激光熔覆WC陶瓷颗粒增强Ni-Al基高温耐磨复合涂层经1 000℃×50h时效后,涂层与基材之间没有出现裂纹、孔洞等缺陷,保持着良好的冶金结合.激光熔覆18wt%WC增强Ni-Al基高温耐磨复合涂层具有良好的高温稳定性;激光熔覆28wt%WC增强Ni-Al基高温耐磨复合涂层显微硬度也没有出现明显降低的现象,但合金元素出现了贫化现象.  相似文献   

6.
柱塞抽油泵柱塞(45钢)长期工作在高摩擦、高腐蚀环境下,需要改善其工作表面的耐磨性及耐蚀性以提高其工作效率、延长使用寿命。采用激光熔覆技术在45钢表面熔覆Ni60-TiC混合粉末制备金属陶瓷涂层,对熔覆不同TiC含量(0%、10%、20%、30%,质量分数,下同)的涂层进行显微硬度测试、摩擦磨损试验及耐腐蚀试验,同时对涂层微观形貌进行表征。结果表明:涂层中加入TiC能有效改善涂层的耐磨耐蚀性能,提高涂层的硬度,降低摩擦系数。综合考虑柱塞抽油泵柱塞实际工作环境,涂层中TiC含量为20%-30%时涂层的耐磨性耐腐蚀性最好。  相似文献   

7.
目的 为探究Ti6Al4V钛合金表面TiN/Ti-Al-Nb基复合涂层的激光熔覆制备新工艺,研究Nb含量对TiN/Ti-Al-Nb基复合涂层微结构及显微硬度的影响规律。方法 以Nb原子数分数分别为10%、15%和25%的Ti+Nb+AlN混合粉末为原材料,采用基于挤压预置粉末法的激光熔覆原位合成技术,制备出TiN/Ti-Al-Nb基复合涂层。通过X射线衍射仪(XRD)物相定性分析,并结合扫描电子显微镜(SEM)和能量分散谱仪(EDS),对TiN/Ti-Al-Nb基复合涂层中的物相进行定性分析,结合二元平衡相图,进一步分析激光原位化学反应机理。借助显微硬度计,研究TiN/Ti-Al-Nb基复合涂层微结构对截面显微硬度分布的影响规律。结果 在高能密度激光束作用下,混合粉末中Ti和AlN发生了充分的激光原位化学反应,生成了TiN陶瓷增强相,TiN陶瓷增强相的含量与Ti粉和AlN粉末的含量正相关。Nb含量的增加显著影响了Ti-Al-Nb基体相的种类,而不改变增强相的种类,随着Nb含量的增加,含Nb基体相的种类增多,发生Ti3Al→Ti3AlNb→Ti2AlNb→Ti39Nb→Nb7Al的转变。随着TiN增强相含量减少,复合涂层截面平均显微硬度从993.2HV0.5降至701.4HV0.5。结论 Nb含量的增加,不会改变TiN/Ti-Al-Nb基复合涂层增强相的种类,但可以降低TiN增强相的含量,从而降低复合涂层截面平均显微硬度。  相似文献   

8.
采用激光熔覆快速凝固技术,原位合成了C为p/Cu复合材料涂层,应用扫描电镜及能谱附件研究了激光工艺参数对涂层显微组织的影响.结果表明,激光熔池大的过冷度条件,有利于Cu-Co合金的液相分离.在优化的激光熔覆工艺条件下.可原位合成表面光滑、均匀连续的致密Cop/Cu复合涂层,涂层组织由大量细小的均匀分布在铜基固溶体基体上的富γ-Co球形颗粒组成.随着热输入的降低,颗粒相的尺寸得到细化.对Cop/Cu复合涂层组织的形成和细化机理进行了分析.  相似文献   

9.
激光原位合成TiN/Ti_3Al基复合涂层   总被引:3,自引:0,他引:3  
利用Ti与AlN之间的高温化学反应,在TC4钛合金表面激光原位合成了TiN/Ti3Al基金属间化合物复合涂层.借助XRD和SEM分析了涂层的物相组成和显微组织.结果表明,涂层主要由TiN和Ti3Al组成.当Ti与AlN摩尔比为4:2时,涂层中TiN含量随激光功率密度的增大而减小;Ti与AIN摩尔比为4:1时,TiN含量随激光功率密度的增大而增大.TiN增强相点阵常数的精确计算显示,涂层中TiN相出现晶格畸变现象,结合EDS分析表明,TiN固溶的Al含量随功率密度的增加而减小.SEM分析表明,TiN增强体的生长形态随着激光功率密度的增大由棒状逐渐向颗粒状转变.当Ti与AlN的摩尔比为4:1,激光功率密度为15.28 kW·s·cm~(-2)时,涂层表面的宏观形貌较好,微观组织无气孔和裂纹,试样截面显微硬度自基体至涂层表面变化平缓,涂层平均显微硬度达到844 HV_(0.2),约为基体合金的3.4倍.  相似文献   

10.
钛合金表面激光熔覆高温自润滑耐磨复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
为了提高钛合金的摩擦学性能,采用激光熔覆技术在Ti-6Al-4V合金表面制备了γ-NiCrAlTi/TiC与γ-NiCrAlTi/TiC/CaF2复合涂层. 采用 X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)分析了涂层的物相和显微组织,在球-盘式高温摩擦磨损试验机上测试了不同温度下(室温,300 ℃,600 ℃)复合涂层的摩擦学性能. 结果表明,激光熔覆的复合涂层与基体呈冶金结合,γ-NiCrAlTi/TiC/CaF2复合涂层主要由"原位"生成的小块状,针状TiC颗粒及TiC树枝晶,γ-NiCrAlTi固溶体基体及弥散分布的球状CaF2颗粒组成. 由于硬质增强相 TiC与增韧相γ-NiCrAlTi的共同作用,γ-NiCrAlTi/TiC与γ-NiCrAlTi/TiC/CaF2复合涂层的磨损率在试验温度下都远低于Ti-6Al-4V基体;在600 ℃时,γ-NiCrAlTi/TiC/CaF2涂层的平均摩擦系数为0.21,相对于基体与γ-NiCrAlTi/TiC涂层分别降低了43%,50%,表现出良好的高温自润滑减摩性能.  相似文献   

11.
以Ta2O5、Nb2O5、C和Ni60混合粉末为原料采用激光熔覆技术,在Q235钢表面制备原位生成TaC-NbC复合颗粒增强镍基复合涂层。使用X射线衍射、扫描电镜和EDS能谱,对熔覆层的显微组织和物相构成进行分析。结果表明,在适当工艺条件下,原位生成TaC-NbC复合颗粒增强镍基涂层形貌良好,涂层与基材呈冶金结合。硬度测试和摩擦磨损试验表明,熔覆层具有高的硬度(平均硬度1200 HV0.3)和良好的耐磨性,与纯Ni60熔覆层相比,其摩擦质量损失仅为纯Ni60熔覆层的31%。分析认为,熔覆层硬度和耐磨性提高的原因在于其中形成大量原位生成的TaC-NbC复合颗粒增强相,且均匀分布于基体。  相似文献   

12.
武扬  虞钢  何秀丽  宁伟健 《焊接学报》2012,33(2):37-40,44
以纯钨粉末为熔覆材料,采用同轴送粉激光熔覆技术,在Q235A钢表面制备了Fe-W合金耐磨涂层.利用X射线衍射(XRD)、光学显微镜、扫描电镜(SEM)及能谱(EDS)对熔覆层的显微组织进行了分析,用显微硬度计和摩擦磨损试验机对熔覆层的硬度和耐磨性进行了测试.结果表明,熔覆层与基底冶金结合,无明显裂纹或气孔,涂层内部由致密的粗大树枝状和短棒状Fe7W6增强相以及弥散分布的细小颗粒状Fe2W相组成,其均匀分布在α-Fe固溶体中.熔覆层平均硬度700 HV,为基材Q235A钢的3.5倍,同时耐磨性能也得到了显著提高.  相似文献   

13.
研究了送粉激光熔覆铁基合金添加Nb粉的可能性,并对熔覆试样进行了显微组织分析和硬度、磨损性能测试.扫描电镜、光学显微镜、能谱分析和x射线衍射分析结果表明,Nb在熔覆层中均匀分布,Nb的加入使枝晶组织明显细化,界面上方等轴晶数量增多,共晶组织更加致密.硬度测试和磨损试验表明,Nb元素的加入提高了熔覆层的显微硬度、耐磨性.分析认为,组织与性能的提高是由于Nb的加入生成大量弥散均匀分布的NbC颗粒增强相,同时生成的NbC成为异质核,提高了凝固结晶过程中的形核率,并且Nb原子优先占据晶界,强化了晶界,阻碍了晶体的长大.  相似文献   

14.
用HGL-6000型横流CO2激光器在316L不锈钢表面熔覆Ni-WC涂层。采用金相显微镜观察熔覆层组织形貌;利用显微硬度计和电化学工作站研究了不同激光功率对熔覆层硬度及耐蚀性的影响。结果表明,熔覆层组织主要为树枝晶及共晶组织自表面向内部逐渐粗化;随激光功率增加,熔覆层组织先细小后变得粗大,当激光功率为3500 W时,组织最细小;随功率增加,熔覆层硬度降低,且自表面至结合处均呈下降趋势,当激光功率为2500 W时,熔覆层硬度(573HV1)最高,为基体的3.3倍,功率为3500 W时,熔覆层硬度为基体的2.2倍;随功率增加,熔覆层耐蚀性先增强后减弱,功率为3500 W的熔覆层耐蚀性优于其它功率的熔覆层且与316L不锈钢耐蚀性相当。  相似文献   

15.
采用激光熔覆法于45钢表面熔覆了WC/Co-Cr合金涂层,研究了涂层的组织与高温滑动磨损特性。结果表明:所制备的涂层高温耐磨性能良好。磨损试验温度为室温(RT)至200℃时,熔覆层的磨损机制表现为磨粒磨损与粘着磨损;200~500℃时,磨损机制转变为轻微擦伤与氧化磨损共同作用;600℃时磨损机制为塑性涂抹。  相似文献   

16.
1 INTRODUCTIONDuringpasttwentyyears,compositecoatingsproducedbylasercladdinghaveshowngreatperspectiveinmaterialsurfacehardeningbecauseoftheirhighmicrohardness,excellentwearresistanceandgoodcorrosionresistance[1].Thiskindofcoatingsismostlyformedwith…  相似文献   

17.
原位反应合成Mo-Ni-B系三元硼化物熔覆层的研究   总被引:5,自引:0,他引:5  
利用氩弧熔覆的方法,在镍基高温合金基体上原位反应合成了Mo∶B原子比从0.8到1.2的Mo-Ni-B系三元硼化物熔覆层,利用X射线衍射仪、扫描电镜、能谱仪、显微硬度计分析了熔覆层的物相组成、显微组织和显微硬度.结果表明,熔覆层主要为三元硼化物M3B2硬质相和Ni、Mo组成的粘结相,其显微硬度在700~800 HV之间.在5vol%H2SO4溶液中,熔覆层的腐蚀速率在(0.19~0.94)μm/h,其中Mo∶B原子比为1的熔覆层显示了最好的抗腐蚀性.  相似文献   

18.
为了利用高速钢的优良性能,拓展其应用范围、降低使用成本,采用同轴送粉激光熔敷技术,在3mm厚的普通用不锈钢侧面制备高硬度的高速钢耐磨涂层,并对熔敷后的试样进行热处理。分析涂层的显微组织,研究热处理制度对涂层显微硬度的影响,测试涂层的耐磨性能。结果表明:涂层热处理前主要为细小等轴晶,组织为淬火马氏体+残留奥氏体+少量碳化物;热处理后主要为回火马氏体+少量残留奥氏体+大量析出碳化物;获得了最佳热处理参数,热处理后涂层硬度大幅度提高,约为基材的2倍;相同磨损条件下,耐磨涂层的磨损失质量仅为基体的1/5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号