首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
目的研究"三光束光内同轴送丝"激光熔覆新方法以及单向、多向单道熔覆成形效果。方法采用光线追迹法分析了三光束光斑几何特性,运用TracePro分析了光斑能量分布。利用研制的三光束光内送丝装置进行了单向以及多向单道熔覆实验,对其展开成形表面质量以及单道熔覆层的组织和硬度分析。结果 "三光束光内同轴送丝"激光熔覆新方法可以将原始圆形激光束整形为周向均匀分布的三个扇形光斑,三个光斑光通量均沿着z轴方向呈"尖顶状"分布,丝材能够被三个光斑均匀包裹。基材和丝材采用不锈钢304材料,丝材线径为0.8 mm,负离焦量为2.5 mm,激光功率为1500 W,扫描速度为3.5 mm/s,送丝速度为20.5 mm/s,展开单向和多向单道熔覆成形测试,丝材熔化充分,熔覆层表面均匀平滑。熔覆层形貌和质量基本不受扫描方向的影响。单道熔覆层和基体结合良好,组织整体比较细密,无气孔和裂纹等缺陷,熔覆层底部到顶部晶粒形态主要为树枝晶、柱状晶、胞状晶和树枝晶,熔覆层组织为铁素体δ和奥氏体γ,凝固模式为FA模式,熔覆层底部到顶部铁素体δ的主要形态为板条状铁素体、蠕虫状铁素体、骨架状铁素体和板条状铁素体。熔覆层的平均硬度(228HV)明显高于基材硬度,熔覆层底部到顶部的硬度过渡平稳,不存在明显软化区,组织整体比较细小致密,晶粒分布均匀。结论 "三光束光内同轴送丝"激光熔覆新方法可以实现光、丝耦合,基材和丝材采用不锈钢304材料,选择合理的工艺参数,可以获得理想的单向以及多向单道熔覆成形效果。  相似文献   

2.
利用6 kW光纤激光器在Cr12MoV模具钢表面激光熔覆Fe-Cr-B合金涂层。运用金相显微镜和显微硬度仪,研究了激光功率、扫描速度、送粉率对熔覆层成形、尺寸、稀释率及组织结构和微观硬度的影响。结果表明:熔覆层组织主要由平面晶、树枝晶和等轴晶构成。理想的工艺参数为激光功率(P)2000 W,扫描速度(V1)4 mm/s,送粉率(V2)15 g/min。该工艺参数下熔覆层晶粒细小,与基体呈现良好冶金结合,稀释率为9.8%,熔覆层显微硬度平均高达1000 HV。  相似文献   

3.
利用激光熔覆技术在42CrMo钢表面制备了中锰铁基合金熔覆层。采用OM、SEM、XRD、显微硬度仪及SRV4摩擦磨损试验机对不同扫描速度下熔覆层的组织及性能进行了研究。结果表明:熔覆层与基体呈冶金结合,熔覆层均由熔覆区、热影响区和基体三部分组成,其组织由下至上依次为平面晶、树枝晶和胞状晶,且随扫描速度的增大,组织细化。熔覆层组织由马氏体和奥氏体组成,且随着扫描速度的增大,马氏体含量略有增加。熔覆层的显微硬度随着扫描速度的增加呈减小的趋势,在5 mm/s时硬度达到最大的739 HV0.1。熔覆层的耐磨性好于基体,但随扫描速度的增大而变差,5 mm/s时耐磨性最好,相对磨损性是基体的2.57倍。  相似文献   

4.
目的确定TC4钛合金激光熔覆的最优工艺参数,研究其热循环特性,分析激光熔覆温度对组织的影响规律。方法采用3D高斯热源,基于Sysweld软件平台,对TC4钛合金激光熔覆Ni60A-50%Cr3C2粉末过程进行数值模拟仿真,研究温度场云图及其热循环特性,模拟计算激光熔覆最高温度、加热速度和冷却速度,以及熔池最大深度和热影响区宽度,进行激光熔覆实验验证,结合熔覆层显微组织扫描电镜(SEM)图像,研究冷却速度对熔覆层组织的影响。结果由仿真可知,激光熔覆工艺参数中的光斑直径和送粉速度主要影响熔覆层的高度和宽度,对温度场分布起主要影响作用的是激光功率和扫描速度。激光功率为500 W,扫描速度为4 mm/s时,熔覆层区域熔化完全,与基体结合良好。激光熔覆最高温度为2700℃,最大加热速度约为2200℃/s,最大冷却速度约为1200℃/s,熔池最大深度在0.33~0.66 mm之间,热影响区宽度约为1.2 mm。模拟与实验得到的熔覆层截面形貌基本一致。不同冷却速度得到的熔覆层组织不同,随着冷却速度的降低,显微组织由短小的胞晶和树枝晶逐步转变为柱状晶、胞状晶和平面晶,最终形成淬火态的针状马氏体。结论最佳工艺参数为:激光功率500 W,扫描速度4 mm/s。冷却速度是影响熔覆层组织的重要因素,仿真模型的正确性及方法的可行性得到了实验验证。  相似文献   

5.
采用YLS-3000光纤激光器进行激光熔覆镍基高温合金Ni35实验,研究了激光扫描速度对熔覆层表面形貌、横截面宏观形貌、微观组织和力学特性的影响。结果表明:当扫描速度小于等于3 mm/s,熔覆层表面平滑光洁;当扫描速度大于等于5 mm/s,熔覆层形貌由光滑向鱼鳞状转变,表面平整度降低;扫描速度的变化不改变组织形态,改变晶粒的大小;熔覆层从底部到顶部,组织形态由平面晶、胞状晶、树枝晶和等轴树枝晶组成;当扫描速度为7、9 mm/s时,熔覆层表面和横截面均产生纵向的裂纹,横截面组织中裂纹具有典型的裂纹沿晶、裂纹偏转、裂纹分叉和裂纹止裂现象;不同扫描速度下熔覆层的显微硬度均高于基体的。  相似文献   

6.
《铸造技术》2016,(1):44-47
利用IPG-3000 W光纤连续激光器和激光同轴送粉方式在45钢表面熔覆铁基合金粉末,利用金相显微镜、显微硬度计、X射线衍射仪等,分析研究激光熔覆铁基合金粉末对45钢微观组织、显微硬度的影响。结果表明:45钢光纤激光熔覆层的微观组织为胞状晶、柱状晶、树枝晶和等轴晶,主要物相为Ni-Cr-Fe、γ-[Fe,Ni];当激光功率为600 W,扫描速度为0.3 m/s,送粉速率为0.8 g/h,靠近结合面一侧的熔覆层处最大硬度值为560 HV。对比单道和多道搭接熔覆层硬度,发现多道搭接熔覆层硬度较单道熔覆层硬度降低10~40 HV  相似文献   

7.
采用单道熔覆试验,在Q345钢表面激光熔覆铝青铜片,研究激光功率和扫描速度对熔覆层组织及显微硬度分布的影响。结果表明,激光熔覆铝青铜覆层内组织致密,与基体呈冶金结合,随着激光能量密度的增加,熔覆层组织逐渐由细小等轴晶向大量树枝晶过渡,覆层无气孔、裂纹等缺陷。覆层中主要有α相、β相、γ2相、κ相以及Fe相。热影响区硬度最高,覆层次之,基体硬度最低。随着扫描速度的增加,覆层硬度逐渐增加,随着激光功率的增加,覆层硬度逐渐降低。  相似文献   

8.
《铸造》2016,(1)
利用等离子束送丝熔覆技术在50Mn2合金结构钢表面制备耐磨熔覆层,研究主弧电流和扫描速度等工艺参数对熔覆层宏观形貌、显微组织及显微硬度影响。研究表明:主弧电流和扫描速度是影响熔覆层质量主要因素。随主弧电流增大,熔覆层焊道更连续且熔宽增大、余高先减后增,熔覆层中部组织形貌由胞状晶向树枝晶和等轴晶转变,组织以马氏体和铁铬碳共晶化合物为主,显微硬度较基体提高2~3倍;扫描速度越高,熔覆层焊道越不连续且易出现凹陷,熔宽和余高减小,显微组织形貌由胞状晶向树枝晶转变,其相组织仍以马氏体和铁铬碳共晶化合物为主,显微硬度随着扫描速度增大而增大,比基体硬度有很大提高。  相似文献   

9.
为实现损伤液压支架立柱的再制造修复,采用激光熔覆技术在液压支架立柱材料27SiMn钢表面制备Ni60合金涂层。通过正交试验法研究激光工艺参数对涂层稀释率的影响规律并确定最优工艺参数。利用超景深显微镜、显微硬度计及摩擦磨损试验机等分析了涂层的显微组织、硬度及耐磨性能。结果表明,影响熔覆层稀释率的因素由大到小依次为:激光功率>扫描速度>送粉速度>离焦量。以稀释率为指标的最佳工艺参数组合为A1B3C3D3,即激光功率为1500 W、扫描速度为22 mm/s、离焦量为+1 mm、送粉速度为12 g/min。熔覆层整体晶粒细小均匀,涂层上部主要由等轴晶组成,中部主要由等轴晶和树枝晶组成,下部则主要由沿熔合界面生长的胞状晶及柱状晶组成。熔覆层的平均硬度值为729.5 HV0.5,是基体硬度的2.32倍,最高硬度出现在熔覆层顶部的等轴晶区,为756.9 HV0.5。熔覆层的显微硬度压痕棱边平直、四角光滑无裂纹,具有良好的韧性。熔覆层的摩擦系数明显低于基材,且稳定性好于基材,磨损量仅为基材的58%...  相似文献   

10.
《铸造》2017,(3)
以铁基合金为熔覆粉末材料,采用不同激光熔覆功率进行单层单道激光熔覆,分析了光纤激光功率参数对熔覆层组织和性能等方面的影响。结果表明,随着激光功率的增加,激光熔覆层的显微组织形态由胞状晶和柱状树枝晶向树枝晶转变。其他工艺参数不变,组织中的晶粒尺寸随着激光功率的增大而增加。熔覆层显微硬度随距熔覆层表面距离的增加而增加,在距表面0.8mm处达到峰值,随后降低至母材硬度值附近,当激光功率为700W时,0.8 mm处显微硬度值最大,硬度HV_(0.2)为681.16。熔覆层中所含有的主要物相为Fe_(0.94)Ni_(0.054)、[Fe,Ni]、Cr_3C_2和Cr_(23)C_6。  相似文献   

11.
为了探讨磨削工艺参数对20CrMnTi磨削表面质量的影响,采用CBN砂轮开展单因素磨削试验,选取表面洛氏硬度H、表面残余应力σs和亚表面残余应力分布σss作为指标,通过试验分析20CrMnTi的磨削加工特性。试验结果表明:相同条件下,H随着砂轮线速度vs和磨削深度ap的增大而减小,随着工件进给速度vw的增大而增大,且ap的影响最大、vw的次之、vs的最小;磨削后工件表面表现为残余压应力,压应力σs的大小(绝对值)随着vw增大而增大,随着ap增大而减小,随vs增大呈现波动;磨削后工件的σss随着ap增大逐渐由压应力转变为拉应力,最后趋于0;在小vs和较小ap时,在相同亚表面深度情况下可以获得更大的压应力或者更小的拉应力。在本试验所讨论的参数范围内,vs=60 m/s,vw=1.045 m/s,ap=3 μm时可以获得较高H和残余压应力以及较好的σss,即20CrMnTi磨削加工质量较好。   相似文献   

12.
针对激光立体成形变半径圆筒件边部及外沿塌陷、热累积效应引起力学性能下降等增材制造难点,提出了脉冲激光成形FeCrNiCu合金圆筒件优化路径及工艺,实现了变半径圆筒结构的直接熔覆成形,验证了该结构件良好的组织构成以及力学性能。结果表明:覆层顶部为细小致密的等轴晶组织,中部由具有定向生长趋势的树枝晶构成,底部由胞状晶构成,晶内及晶间有颗粒状Cr7C3型强化析出相析出。覆层显微硬度(HV)最高值为6750MPa,覆层显微硬度(HV)主要分布在5540~5760 MPa;成形层(纵向)的抗拉强度最大为1070 MPa,抗拉强度范围1010~1070 MPa;成形层(横向)的抗拉强度最大为960 MPa,抗拉强度范围780~960 MPa。覆层冲击韧性分布在511.08~727.54 kJ·m-2,相关力学试验验证了该结构件具有优良的力学性能。  相似文献   

13.
在不锈钢激光焊接过程中对工件施加高频振动,研究不同焊接速度和振动频率对接头宏观成形、微观组织及显微硬度的影响. 结果表明,焊缝边缘为柱状树枝晶,中央为细小等轴晶,焊缝组织为奥氏体和残余δ铁素体. 焊接速度增加,虽可使熔宽和焊缝区晶粒尺寸减小,接头硬度增大,但无法阻碍树枝晶的生长. 施加高频振动可抑制枝晶的数量和大小,并增加焊缝中等轴晶的数量,优化接头综合性能. 振动频率增加,焊缝区晶粒尺寸减小、等轴晶数量增加且有细小等轴晶弥散分布于树枝晶之间,焊缝硬度增大,振动起到了细晶强化的效果. 而振动频率对熔宽并无明显影响.  相似文献   

14.
YAG (Y3Al5O12)晶体亚表面损伤降低材料使用性能和寿命。本研究基于经典脆性固体断裂力学模型,并引用中位裂纹深度计算式,得到中位裂纹是脆性材料亚表面损伤的主要因素。通过金刚石磨粒数统计和金刚石线锯切削参数总结,获得单颗磨粒切削深度并计算切削投影面积,得到单颗磨粒所受法向和切向力,然后预测亚表面损伤裂纹深度与金刚石线速度vs、进给速度vw、切割材料性质、电镀锯丝上金刚石颗粒粒度分部等有很大关系,为硬脆材料切割后亚表面损伤预测提供依据。最后提出该模型需要进一步通过实验修正的必要。   相似文献   

15.
使用脉冲Nd:YAG激光器在Cr12MoV模具钢表面熔覆了Ni20Cr和Ni60A多层Ni基合金耐磨涂层,并使用X射线衍射仪、扫描电镜及能谱仪分析了涂层的物相和显微组织。同时运用显微维氏硬度计以及高速往复摩擦磨损试验机对比分析了涂层与基体的硬度及耐磨性。结果表明,采用Ni20Cr作为打底层的多层Ni基合金涂层,能有效改善涂层与基体的冶金结合,大大减少涂层中的裂纹、气孔等缺陷。涂层表面物相主要为g-(Fe, Ni)、FeNi3、BNi3、Cr3C2以及Ni-Cr-Fe;涂层底部至表面的组织为胞状树枝晶、柱状树枝晶、择优生长树枝晶以及等轴树枝晶。Ni60A涂层大大提高了Cr12MoV模具钢的表面硬度,涂层表面显微硬度最高可达到1000 HV0.2,是基体的1.6倍。Ni60A涂层耐磨损性能明显优于基体,较基体提高了2.0~3.3倍。在Cr12MoV模具钢表面激光熔覆多层Ni基合金涂层后,形成了Cr3C2、Ni-Cr-Fe等硬质相,可有效提高其表面的硬度和耐磨性,起到降低模具在使用过程中因摩擦磨损而报废的概率,从而进一步延长模具的使用寿命。  相似文献   

16.
高莉莉  边秀房  姚秀军  李鲁伯 《铸造技术》2007,28(11):1442-1445
通过对FeCrCoWCBY2O3合金粉末在低碳钢表面进行激光熔覆,获得了C、B含量较高的无裂纹熔覆层,其厚度在1.0~1.5mm之间。利用XRD、SEM等分析了熔覆层的成分及显微组织结构,并测试了涂层的硬度和耐磨性。结果显示:激光处理后表面迅速熔化和冷却,组织由马氏体、残余奥氏体枝晶和枝晶间碳化物组成;熔覆层的硬度比熔覆基体提高3倍多,且硬度最高值不在表层,而在距离表面0.3mm处;耐磨性相对基体提高接近2倍。  相似文献   

17.
为了修复飞机发动机叶片(K417G)的铸造缺陷和损伤,采用了500W-IPG光纤激光熔覆系统将镍基合金粉末(RCF-201)熔覆到镍基高温合金K417G基体上.利用显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、电子探针(EPMA)和能谱仪(EDS)等分析了堆焊层的组织和成分,用显微硬度计分析了堆焊层硬度分布,用高温蠕变实验机分析了堆焊层高温蠕变性能.试验结果表明,熔覆层从熔合线到表面的组织依次由平面晶、柱状晶和等轴晶组成;熔覆层的组织为亚共晶组织,初晶相为富镍固溶体γ-Ni,共晶组织为γ-Ni+Cr7C3+Cr23C6+(Mo0.54,Ti0.46) C;熔覆层的硬度约为650 HV,约是母材硬度(350 HV)的1.86倍;在950℃/235 MPa条件下,激光熔敷试样的蠕变寿命最长约为26.17 h,且断裂位置位于母材.  相似文献   

18.
目的研究U71Mn钢表面激光熔覆Ni60-25%WC涂层的最佳工艺参数。方法首先通过单道单因素试验初步选取激光功率、送粉量、扫描速度和光斑直径4个工艺参数,然后进行4因素3水平的单道正交试验,以熔覆层的宽度、高度和稀释率作为判断熔覆层质量的指标,做极差分析,最后得到最优工艺参数并分析了熔覆层的显微硬度及显微组织。结果单道单因素试验及单道正交试验得到的工艺参数均为:激光功率1500 W,送粉量4 g/min,扫描速度6 mm/s,光斑直径2.2 mm。通过单道正交试验极差表分析发现,工艺参数对质量指标的影响程度不同,对熔覆层宽度的影响为扫描速度送粉量激光功率光斑直径,对熔覆层高度的影响为送粉量扫描速度光斑直径激光功率,对熔覆层稀释率的影响为送粉量光斑直径扫描速度激光功率,对比发现送粉量是熔覆层的最大影响因子。熔覆层的显微硬度最高可达到1170HV,是基体的3.7倍。结论在U71Mn钢表面激光熔覆Ni60-25%WC涂层,可以制备出光滑且紧密结合的熔覆层,且表面硬度明显提高。  相似文献   

19.
目的在5083铝合金表面激光熔覆制备Al-Ni-Y-Co-La非晶复合熔覆层,并研究扫描速度对熔覆层组织与性能的影响规律。方法采用YAG:Nd激光器,在扫描速度分别为200、300、400 mm/min下制备Al基非晶复合层,并采用金相显微镜、扫描电子显微镜、X射线衍射仪、硬度仪、摩擦磨损试验机观察熔覆层微观组织及测试其显微硬度及耐磨损性能。结果熔覆层主要由α-Al相、Al3Y及Al4Ni Y等金属化合物相组成。随着扫描速度的增加,熔覆层组织由粗大的条(柱)状晶向细小的等轴晶转变,当扫描速度大于300 mm/min时,熔覆层内存在部分非晶复合区域。熔覆层平均显微硬度大于250HV0.1,当扫描速度为300 mm/min时,熔覆层显微硬度最高达300HV0.1。低载荷下,扫描速度为200、300、400 mm/min时的熔覆层和基体的平均摩擦系数分别为0.384、0.288、0.304、0.571,平均磨损体积分别为7.586×10~7、2.516×1~07、5.027×10~7、45.638×10~7μm3,熔覆层平均摩擦系数和磨损体积较5083基体均显著降低。结论采用激光熔覆技术能够制备Al基非晶复合层。当扫描速度为300 mm/min时,熔覆层具有最佳的成形性和耐磨损性能;当扫描速度进一步增大至400 mm/min时,熔池拖带基体翻卷上浮导致成分严重偏析,使熔覆层的成形性和耐磨损性能下降。  相似文献   

20.
激光熔覆NJ-4镍基合金涂层显微硬度的探究   总被引:3,自引:2,他引:1  
目的探究晶体尺寸、组织结构和过冷度对NJ-4镍基合金涂层显微硬度的影响规律,找出一定组织结构和晶体尺寸下的最佳显微硬度。方法采用正交实验对基体进行激光熔覆,然后分析组织结构、晶体尺寸和过冷度对合金涂层硬度的影响。结果不同组织结构的NJ-4镍基合金涂层显微硬度有很大差异。从熔覆层的上表面到下表面依次为树枝晶、等轴晶、胞状枝晶、等轴晶、树枝晶、板条状马氏体。晶体结构依次变化时,显微硬度先增大、后减小、再增大,在熔覆层上部的等轴晶处的显微硬度最大。此外显微硬度还受到晶体尺寸和过冷度的影响。激光为熔池凝固提供特殊的冷却环境,抑制了凝固过程中杂质的析出,降低了缺陷的产生概率,提高了熔覆层硬度。激光熔覆层产生的板条状马氏体镶嵌在基体和熔覆层之间,提高了冶金结合强度,测量发现熔覆层的显微硬度是基体的2.5倍以上。结论熔覆层的显微硬度最终由组织结构、晶体尺寸和过冷度决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号