首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

2.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

3.
研究了NdFeB粉末中添加1wt%Dy2O3粉末对烧结NdFeB磁体微观结构的影响,研究发现,在烧结过程中,Dy2O3中的Dy与Nd2Fe14B中的Nd发生了置换反应,Dy进入Nd2Fe14B相,形成了(Nd,Dy)2Fe14B相,提高了磁体的矫顽力。  相似文献   

4.
采用铜模吸铸法制备出厚度为0.8 mm的片状Fe68Nd5Zr2Y4B21大块非晶合金.利用X射线衍射(XRD),差热分析(DTA)和振动样品磁强计(VSM)研究了Fe68Nd5Zr2Y4B21大块非晶合金在铸态和不同温度退火后的磁性能.结果表明,Fe68Nd5Zr2Y4B21大块非晶合金在铸态下为软磁性.合金晶化退火后,磁性能转变为硬磁性,得到了块状的纳米晶复合永磁材料.合金硬磁性的产生是由于合金晶化后产生了Nd2Fe14B硬磁性相和α-Fe,Fe3B软磁性相,软、硬磁相间产生了较强的交换耦合作用而造成的.这一方法为制备块体纳米晶复合永磁材料提供了一种新的手段.  相似文献   

5.
采用快淬法制备了镨基(Nd,Pr)10.5-xDyxFe83.5B6 (x=0,1,2)系列粘结磁体,测定了快淬条带晶化转变温度,研究了添加Dy元素对快淬合金条带晶化转变温度的影响。合金中添加Dy元素,快淬态条带晶化过程中非晶态向晶态转变的开始温度及结束温度提高,转变的温度区间增大。由于热稳定性的提高,条带晶化退火需要采用较高的温度。添加2%Dy元素的(Nd,Pr)8.5Dy2Fe83.5B6合金,最佳退火温度比 (Nd,Pr)9.5Dy1Fe83.5B6和(Nd,Pr)10.5Fe83.5B6分别提高了15和30 ℃。添加Dy元素的粘结磁体,内禀矫顽力Hcj增加,但剩磁Br下降,实验制备的(Nd,Pr)9.5Dy1Fe83.5B6合金磁体的磁性能为Br=0.638 T,Hcj=611 kA/m,(BH)m=71.6 kJ/m3  相似文献   

6.
按照传统烧结Nd-Fe-B永磁体的工艺制得合金Nd33.5Dy1.0Fe63.8Al0.5Cu0.1B1.1,研究了稀土元素Dy以及Al和Cu的添加对永磁体的显微结构及磁性能的影响。结果显示:稀土元素Dy以及Al和Cu能有效的细化晶粒并提高其矫顽力;此外,合理的Dy、Al和Cu含量能获得方形度较好的退磁曲线以及综合磁性能比较好的烧结NdFeB磁体。采用磁力显微镜(MFM)扫描烧结NdFeB试样以表征其表面畴结构,发现Nd2Fe14B的平均晶粒尺寸明显大于磁衬度,这是由于在热退磁状态下,大多数烧结NdFeB磁体的Nd2Fe14B晶粒都是多畴结构。  相似文献   

7.
利用熔体快淬法制备了(Nd Pr)6Fe79B15和(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15非晶带。通过X射线衍射(XRD)和差热分析(DSC),并借助Kempen模型和Kissinger方程,研究了合金的非晶晶化过程及非等温晶化动力学。结果表明,与(Nd Pr)6Fe79B15合金相比,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金的非晶形成能力明显提高,在9 m/s的辊速下获得了厚度为100μm以上的非晶厚带。2种合金的非晶厚带具有不同的晶化过程及晶化动力学机制。(Nd Pr)6Fe79B15合金的晶化分4步完成:非晶相(A)→Nd2Fe23B3+A’→α-Fe+Fe3B+Nd2Fe23B3’→α-Fe+Fe3B+Nd2Fe14B→α-Fe+Fe3B+Nd2Fe14B+Nd1Fe4B4;而(Nd Pr,Dy)6Fe74.5Co3-Cu0.5Zr1B15合金的晶化分两步完成:非晶相(A)→Fe3B+A’→α-Fe+Fe3B+Nd2Fe14B。与(Nd Pr)6Fe79B15合金由界面控制的多晶型晶化不同,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金第1步为界面控制的多晶型晶化,第2步则以扩散控制的共晶型晶化为主。由于退火后组织结构的细化和改善,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金带的磁性能明显优于(Nd Pr)6Fe79B15合金带。  相似文献   

8.
简讯     
纳米晶MRE2Fe14B磁体RE2Fe14B金属间化合物基永磁体自从问世以来20年间已进行了广泛的研究,成功地开发了两类纳米晶Nd2Fe14B磁体,一是烧结磁体,另一类是各向同性纳米晶Nd2Fe14B磁体。这种磁体具有优越的室温磁性能,适合在120℃以下的温度环境中使用。但因其在高于100℃的温度下的热稳定性差而严重限制了它的应用。人们对于用Y、Dy混合元素取代Nd或Pr作为MRE2Fe14B(MRE=Y+Dy+Nd)中主要稀土(RE)成分的一系列合金进行了系统的研究,采用熔体旋淬技术和气体雾化冷凝技术获得薄带和粉末,结果制得了在150℃以上温度下具有优越磁性能的…  相似文献   

9.
用熔体快淬和晶化处理的方法制备了Nd2(FeGaCo)14B/α—Fe纳米复合材料,研究了晶化热处理温度和时间对材料磁性能的影响。结果表明Nd8Fe84.5Ga1Co2B4.5纳米复合材料的磁性能随热处理条件而变化,低温长时间和高温短时间热处理所得样品的最佳磁性能相当。  相似文献   

10.
介绍了添加Dy烧结NdFeB磁体的制备方法,包括单相合金粉末烧结法、双相合金粉末烧结法和晶界扩散法,并总结了Dy元素对烧结NdFeB磁体显微结构和磁性能的影响。添加Dy能细化磁体晶粒,并且在Nd2Fe14B晶粒周围形成富稀土层,从而显著提高磁体的矫顽力性能。  相似文献   

11.
简讯     
《金属功能材料》2012,(2):6+11+17+22+30+41+46+61-64
短时热处理对Nd2Fe14B/α-Fe纳米复合磁体结构和磁性影响罗马尼亚Babes-Bolyai大学物理系V.Pop等人采用高能球磨法制得Nd2Fe14B/α-Fe纳米复合磁体,并选用700℃、750℃、800℃短时间退火,同传统的550℃×1.5h退火对比。结果发现,短时间退火更有利于硬磁相再结晶,抑制软磁相成长,从而提高磁性能。及种短时退火均得到矫顽力,即提高了  相似文献   

12.
用差热分析(DTA),结合X射线衍射(XRD)研究了Nd-Dy-Fe-Co-B非晶合金的晶化动力学。结果表明,温度低于800℃不同升温速率的升温过程中,合金Nd7.5Dy1.5Fe70Co16B5中先后出现三个晶化相:软磁相α-Fe相、亚稳相Nd2Fe23B3和硬磁相Nd2Fe14B。三个晶化相的晶化激活能随晶化份数的增加而降低。α-F的表面激活能为98.09kJ/mol,Nd2Fe23B3和Nd2Fe14B的分别为131.79kJ/mol和129.20kJ/mol.Nd2Fe14B和α-Fe相的晶化行为表明Nd7 .5Dy1.5Fe70Co16B5合金退火时容易形成晶粒粗大的Nd2Fe14B/α-Fe微结构的原因,是Nd2Fe14B和α-Fe相都容易长大造成的。  相似文献   

13.
利用熔体快淬和晶化处理的方法制备了快淬Fe3B/Nd2Fe14B永磁材料。采用XRD,DTA,VSM等方法对合金的晶化行为和磁性能进行研究。结果表明:对于Fe3B/Nd2Fe14B熔体快淬永磁粉末,升温速率对各相的析出和分解温度有一定的影响。完全过淬的Nd4.5Fe77B18.5和Nd4Fe77Cr0.5B18.5合金熔体快淬粉在进行973K,7min晶化处理过程中,首先形成Nd2Fe23B3相,然后Nd2Fe23B3相发生分解,其产物为Fe3B/Nd2Fe14B,此后再没有发生其它的相转变。当晶化温度大于953K,保温10min后,样品的剩磁、矫顽力和最大磁能积明显提高。微量元素Cr的添加对相转变温度有影响,同时可以细化晶粒,提高矫顽力,从而改善材料的永磁性能。  相似文献   

14.
利用化学法制备Nd Fe B中间体,再通过两级还原退火成功制备了主相为Nd2Fe14B的Nd Fe B磁粉。采用X射线衍射(XRD)、透射电镜(TEM)及附带的X射线能谱仪(EDS)、差示扫描量热仪(DSC)和振动样品磁强计(VSM)等表征手段对样品的物相组成、微观组织结构、不同温度的相变和磁性能进行了分析,研究了Nd2Fe14B磁粉的形成过程。结果表明:采用化学法成功合成了分散良好的纳米尺寸的Nd Fe B中间体,中间体由球状Fe3O4颗粒和絮状物的Nd、B元素有机物配位体组成;中间体经过两级还原退火转变为Nd Fe B磁粉,通过800℃的一级还原退火使Nd Fe B中间体转化成NdFeO3、B_2O_3、Nd2O3和α-Fe相;二级还原退火在Ca H2辅助下的反应过程:首先B2O3在501℃下被还原成B相,接着678℃时,Nd2O3和Nd Fe O3被还原以形成α-Fe和Nd H2相,最后895℃时,B、Nd H2和α-Fe发生合金化反应形成Nd2Fe14B磁粉。  相似文献   

15.
采用熔体快淬及晶化退火工艺制备了含铌单相纳米晶Nd12.3Fe79.2Nb2.5B6合金,研究添加Nb对单相Nd2Fe14B纳米晶合金的磁性能、交换耦合和微观结构的影响规律.结果表明:Nb的添加提高了合金的非晶热稳定性,使得合金最佳晶化温度升高;合金晶化退火后,Nb可使晶粒尺寸分布均匀,并得到单一Nd2Fe14B相;晶粒边界比较完整,存在共格、半共格或大角度晶界,但没有观察到晶界相.上述结构可有效提高合金的磁性能,增强交换耦合作用.通过对Nd12.3Fe79.2Nb2.5B6合金磁性能分析可知:650 ℃晶化退火10 min后的合金性能最佳,交换耦合作用最强.  相似文献   

16.
微合金化是提高α-Fe/Nd2Fe14B和Fe3B/Nd2Fe14B纳米复合磁体综合磁性能的常用方法。在许多情况下,微合金化元素如铜和钕明显减小晶粒尺寸,优化硬磁性能。人们采用三维原子探针(3DAP)和透射电子显微术研究了Fe3B/Nd2Fe14B纳米复合材料微结构形成过程中铜和钕原子的团聚和偏析行为,结果发现,铜原子在非晶晶化前形成高密度原子团(~1024/m3),这些原子团成为Fe3B初次晶的非均匀形核位置,从而细化了最终纳米复合材料的组织结构。日本筑波材料科学研究所材料工程实验室材料物理小组的D. H. Ping研究了这些微量元素在α-Fe/Nd2Fe14…  相似文献   

17.
利用高频感应加热的快速晶化方法,对Nd8Fe86B6非晶带进行了晶化退火处理.采用X射线衍射和TEM对原淬态和晶化后的薄带进行了微观组织的分析,用VSM对淬态和快速晶化后薄带的磁学性能进行了测量.观察了在不同晶化条件下Nd8Fe86B6非晶的结构变化以及对其磁性的影响.试验结果表明,快速加热可使非晶带迅速晶化.加热速度和加热时间显著地影响薄带的组织及磁性能.随着加热速度的提高,α-Fe与Nd2Fe14B两相的析出越趋于接近,但过高的加热速度亦使α-Fe过快长大.在快速晶化过程中,α-Fe的长大速度仍大于Nd2Fe14B,因此过长的加热时间将使得α-Fe过度长大.因此,一个较理想的磁学性能都应有一个适合的加热条件相配合.  相似文献   

18.
采用熔体快淬法制备了成分为(Nd0.4Pr0.6)9Fe76B15和(Nd0.4Pr0.6)9Fe72Ti4B15-yCy(y=0-4)的合金薄带,研究了Ti和C含量对快淬带非晶形成、晶化过程及磁性能的影响。结果表明:Ti和C的添加极大地促进了快淬带的非晶形成能力。随C含量增加,非晶形成能力增强,当y=4时,只需要7m/s辊速就可以得到完全非晶,最佳热处理后磁性能达到:Br=0.88T,Hci=618kA/m,(BH)max=109.8kJ/m3。研究还表明,添加Ti元素可以避免(Nd0.4Pr0.6)9Fe76B15非晶晶化过程中(Nd,Pr)2Fe23B3亚稳相和(Nd,Pr)1.1Fe4B4相的生成,从而大大提高矫顽力。(Nd0.4Pr0.6)9Fe76B15合金的晶化过程为:Amorphous phase(A)→(Nd,Pr)2Fe23B3→(Nd,Pr)2Fe14B+α-Fe→(Nd,Pr)2Fe14B+(Nd,Pr)1.1Fe4B4+α-Fe。而(Nd0.4Pr0.6)9Fe72Ti4B15合金的晶化过程为:Amorhous phase(A)→α-Fe+A′→(Nd,Pr)2Fe14B+α-Fe+Fe3B。  相似文献   

19.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

20.
用双合金工艺在 (Nd0.75Dy0.10Tb0.15)12.69Fe79.01Co2.00Nb0.30B6.00 近正分主合金粉中添加质量分数为3%的富稀土辅合金 (Nd0.75Dy0.10Tb0.15)25.00Fe21.50Co21.50Nb4.00Ga8.00Ti5.00Al8.00B7.00粉 和3 %的Dy2O3粉, 成功制备出超高矫顽力和高热稳定性的烧结Nd-Fe-B磁体, 内禀矫顽力 Hci和最大磁能积(BH)max分别为3028 kA/m和 254 kJ/m3, 22-220 ℃剩磁和矫顽力的温度系数 分别为--0.104%℃和--0.356%℃, 260 ℃不可逆磁通损失L irr的绝对值仅为4%。微观组织分析表明: 主相Nd2Fe14B晶粒边界光滑、平直, 富Nd相连续均匀分布于主相晶粒周围; 在Nd2Fe14B晶粒 表层附近富含Dy, Dy2O3中的Dy通过扩散与富Nd相及Nd2Fe14B晶粒表层中的Nd发生置换, 从而在界面附近增强了磁各向异性. 在此基础上, 进一步提出了制备高矫顽力烧结Nd-Fe-B 磁体中Dy的理想分布示意图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号