首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal-interconnection among electrodes is an important process to fabricate electronic devices. A novel high-speed technique using silver (Ag) functional liquid to form Ag lines is proposed. For improvement of the electrical conductivity of the Ag lines, atomic hydrogen (H) generated by the Cat-CVD system is used. There is a sintering phenomenon among Ag nanoparticles (~ 50 nm) during H treatment at low substrate temperatures (~ 100 °C). Scanning electron microscopy (SEM) reveals that the Ag grain size increases with H annealing duration, which results in the resistivity of the Ag lines on an order of 10−6 Ω cm.  相似文献   

2.
Thin film laminates composed of sputtered indium zinc oxide and silver, optimized for conductance and transparency, were tested for water vapor permeation as well as mechanical durability in tension. The ~ 82 nm thick optimized indium-zinc-oxide/silver/indium-zinc-oxide (IZO/Ag/IZO) films were > 80% transparent in the visible range (400 nm-700 nm) with measured sheet resistances less than 5 Ω/sq. The water vapor permeation measurements using Ca test methods at several temperature/ humidity conditions indicated that the addition of the thin Ag layer provided little improvement relative to a single indium-zinc-oxide (IZO) layer of similar thickness. However, the critical strain in bending tests for IZO/Ag/IZO films was improved compared to IZO films. The modulus (E ~ 113 GPa), hardness (H ~ 7 GPa), fracture toughness (KIC ~ 1.1 MPa⋅m0.5), and interfacial shear (“adhesion”) (τc ~ 16 MPa) of/related to IZO, and measured by nanoindention are consistent with other brittle ceramic thin film materials.  相似文献   

3.
F. Gao  P.F. Hao 《Thin solid films》2011,519(22):7750-7753
A composite film of nanocrystalline Si (nc-Si) embedded in (Al2O3 + SiO2) has been prepared on a quartz substrate by thermally evaporating a 400 nm thick Al film on a quartz substrate and annealing in air at 580 °C for 1 h. During annealing, the Al reacts with the SiO2 of the quartz substrate and produces nc-Si, which is embedded in the (Al2O3 + SiO2) film. The average size of nc-Si is ~ 22 nm and the thickness of the nc-Si:(Al2O3 + SiO2) composite film is ~ 810 nm. It is found that the prepared film is thermoelectric with a Seebeck coefficient of − 624 μV/K at 293 K and − 225 μV/K at 413 K.  相似文献   

4.
Natively textured surface aluminum-doped zinc oxide (ZnO:Al) layers for thin film solar cells were directly deposited without any surface treatments via pulsed direct-current reactive magnetron sputtering on glass substrates. Such an in-situ texturing method for sputtered ZnO:Al thin films has the advantages of efficiently reducing production costs and dramatically saving time in photovoltaic industrial processing. High purity metallic Zn-Al (purity: 99.999%, Al 2.0 wt.%) target and oxygen (purity: 99.999%) were used as source materials. During the reactive sputtering process, the oxygen gas flow rate was controlled using plasma emission monitoring. The performance of the textured surface ZnO:Al transparent conductive oxides (TCOs) thin films can be modified by changing the number of deposition rounds (i.e. thin-film thicknesses). The initially milky ZnO:Al TCO thin films deposited at a substrate temperature of ~ 553 K exhibit rough crater-like surface morphology with high transparencies (T ~ 80-85% in visible range) and excellent electrical properties (ρ ~ 3.4 × 10− 4 Ω cm). Finally, the textured-surface ZnO:Al TCO thin films were preliminarily applied in pin-type silicon thin film solar cells.  相似文献   

5.
Quaternary alloyed HfAlTiO thin (~ 4-5 nm) films in the wide range of Ti content have been grown on Si substrates by Atomic Layer Deposition technique, and the effect of both the film composition and the interfacial reactions on the electrical properties of HfAlTiO films is investigated. It is shown that depending on the Ti content, the permittivity and the leakage current density Ileak in HfAlTiO films vary in the range k = 18 ÷ 28 and 0.01-2.4 A cm− 2, respectively. The incorporation of ultra thin SiN interlayer in Al/HfAlTiO/SiN/Si stack gives rise to the sharp (× 103) decrease of the Ileak ~ 6 · 10− 5 A/cm2 at the expense of the rather low capacitance equivalent thickness ~ 0.9 nm.  相似文献   

6.
The electronic properties of the interface between p-type Si and Al-doped ZnO have been investigated. Films of ZnO(Al) with a thickness of 300 nm were deposited at room temperature by dc magnetron sputtering and subsequently subjected to heat treatment in air in the temperature range 100-400 °C. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements were used to characterize the electrical properties of the heterostructure. The I-V measurements show a diode-like behavior with a rectification of ~ 3-4 orders of magnitude. However, annealing above 200 °C gives rise to a pronounced recombination/generation current in the depletion region, which correlates with an increase of the carrier concentration close to the interface and indicates defect formation. Indeed, DLTS reveals the presence of two prominent defect states, one at 0.38 eV above the valence band edge (Ev), and the other, formed during the heat treatment above 250 °C, around Ev + 0.43 eV, which is consistent with the I-V and C-V data.  相似文献   

7.
Depending on the resistivity and transmittance, transparent conductive oxides (TCO) are widely used in thin film optoelectronic devices. Thus doped In2O3 (ITO), ZnO, SnO2 are commercially developed. However, the deposition process of these films need sputtering and/or heating cycle, which has negative effect on the performances of the organic devices due to the sputtering and heat damages. Therefore a thermally evaporable, low resistance, transparent electrode, deposited onto substrates room temperature, has to be developed to overcome these difficulties. For these reasons combination of dielectric materials and metal multilayer has been proposed to achieve high transparent conductive oxides. In this work the different structures probed were: MoO3 (45 nm)/Ag (x nm)/MoO3 (37.5 nm), with x = 5-15 nm. The measure of the electrical conductivity of the structures shows that there is a threshold value of the silver thickness: below 10 nm the films are semiconductor, from 10 nm and above the films are conductor. However, the transmittance of the structures decreases with the silver thickness, therefore the optimum Ag thickness is 10 nm. A structure MoO3 (45 nm)/Ag (10 nm)/MoO3 (37.5 nm) resulted with a resistivity of 8 × 10− 5 Ω cm and a transmittance, at around 600 nm, of 80%. Such multilayer structure can be used as anode in organic solar cells according to the device anode/CuPc/C60/Alq3/Al. We have already shown that when the anode of the cells is an ITO film the introduction of a thin (3 nm) MoO3 layer at the interface anode (ITO)/organic electron donor (CuPc) allows reducing the energy barrier due to the difference between the work function of ITO and the highest occupied molecular orbital of CuPc [1]. This property has been used in the present work to achieve a high hole transfer efficiency between the CuPc and the anode. For comparison MoO3/Ag/MoO3/CuPc/C60/Alq3/Al and ITO/MoO3/CuPc/C60/Alq3/Al solar cells have been deposited in the same run. These devices exhibit efficiency of the same order of magnitude.  相似文献   

8.
Aluminum doped zinc oxide (ZnO:Al) films were grown using spray pyrolysis technique. Effect of doping on structural, electrical, optical and morphological properties was studied. Aluminum doping improved the prominence of [002] growth while maintaining the grain size ~ 48 nm. Using an intermediate Al/Zn atomic ratio in precursor (1.5:100), we could achieve a low resistivity ρ ~ 7 × 10− 4 Ωcm. These films possessed an average visible transmittance ~ 88%, an optical gap ~ 3.7 eV and plasma wavelength at 1.87 μm. A simultaneous use of methanol and iso-propanol in the precursor lead to a moderate surface roughness ~ 12 nm. The films were surface modified using wet chemical etching in diluted hydrochloric acid, for varied time intervals (5 s-15 s) and etchant concentrations (0.125%-1%). The etching experiments could be used to know the building of the film as also to modify the surface for desired optical and morphological properties.  相似文献   

9.
We report on the self-limiting growth and characterization of aluminum nitride (AlN) thin films. AlN films were deposited by plasma-enhanced atomic layer deposition on various substrates using trimethylaluminum (TMA) and ammonia (NH3). At 185 °C, deposition rate saturated for TMA and NH3 doses starting from 0.05 and 40 s, respectively. Saturative surface reactions between TMA and NH3 resulted in a constant growth rate of ~ 0.86 Å/cycle from 100 to 200 °C. Within this temperature range, film thickness increased linearly with the number of deposition cycles. At higher temperatures (≥ 225 °C) deposition rate increased with temperature. Chemical composition and bonding states of the films deposited at 185 °C were investigated by X-ray photoelectron spectroscopy. High resolution Al 2p and N 1s spectra confirmed the presence of AlN with peaks located at 73.02 and 396.07 eV, respectively. Films deposited at 185 °C were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction. High-resolution transmission electron microscopy images of the AlN thin films deposited on Si (100) and glass substrates revealed a microstructure consisting of nanometer sized crystallites. Films exhibited an optical band edge at ~ 5.8 eV and an optical transmittance of > 95% in the visible region of the spectrum.  相似文献   

10.
Cost efficient and large area deposition of superior quality Al2O3 doped zinc oxide (AZO) films is instrumental in many of its applications, including solar cell fabrication due to its numerous advantages over indium tin oxide (ITO) films. In this study, AZO films were prepared by a highly efficient rotating cylindrical direct current (DC) magnetron sputtering system using an AZO target, which has a target material utilization above 80%, on glass substrates in argon (Ar) ambient. A detailed analysis on the electrical, optical, and structural characteristics of AZO thin films was performed for the solar cell, as well as display applications. The properties of films were found to critically depend on deposition parameters, such as sputtering power, substrate temperature, working pressure, and film thickness. A low resistivity of ~ 5.5 × 10− 4 Ω cm was obtained for films deposited at 2 kW, keeping the pressure, substrate temperature and thickness constant at 3 mTorr, 230 °C and ~ 1000 nm respectively. This was due to an increase in carrier mobility and large grain size. Mobility is found to be controlled by ionized impurity scattering within the grains, since the mean free path of carriers is much smaller than the grain size of the films. The AZO films showed a high transparency of ~ 90% in the long wavelength region. Our results offer a cost-efficient AZO film deposition method that can fabricate films with significant low resistivity and high transmittance that can be applied in thin-film solar cells, as well as thin film transistor (TFT) and non-volatile memory (NVM).  相似文献   

11.
In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation. In case of NiO-GDC composite substrate, the thickness of film was higher (~ 13 μm) as compared to the film thickness on GDC substrate (~ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC/NiO-GDC structure was of the order of 0.10 S/cm at 500 °C, which is a desirable property for its prospective application.  相似文献   

12.
Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ~ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ~ 80%) and excellent electrical properties (Rs ~ 10 Ω at d ~ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).  相似文献   

13.
Ultrathin films of MgO (~ 6 nm) were deposited on Si(100) using dual ion beam sputtering in different partial pressures of oxygen. These thin films were characterized by X-ray photoelectron spectroscopy (XPS) for chemical state analysis and conducting atomic force microscopy for topography and local conductivity map. No trace of metal Mg was evidenced in these MgO films. The XPS analysis clearly brought out the formation of oxygen interstitials and Mg(OH)2 primarily due to the presence of residual water vapors in the chamber. An optimum value of oxygen partial pressure of ~ 4.4 × 10− 2 Pa is identified with regard to homogeneity of film and stoichiometry across the film thickness (O:Mg::0.93-0.97). The local conductivity mapping investigations also established the film homogeneity in respect of electrical resistivity. Non-linear local current-voltage curves revealed typical tunneling characteristics with barrier width of ~ 5.6 nm and barrier height of ~ 0.92 eV.  相似文献   

14.
Metal-insulator-metal (MIM) capacitors with excellent electrical properties have been fabricated using high-κ TaAlOx-based dielectrics. TaAlOx films having thickness of 11.5-26.0 nm, with equivalent oxide thickness (EOT) of ~ 2.3-5.3 nm were deposited on top of Au/SiO2 (180 nm)/Si (100) structures by radio frequency magnetron co-sputtering of Ta2O5 and Al2O3 targets. The surface chemical states of the as-deposited TaAlOx films were characterized by high-resolution X-ray photoelectron spectroscopy. The crystallinity of the TaAlOx films for various post-deposition annealing treatments was characterized by grazing incident X-ray diffraction, which reveals that an amorphous phase is still retained for rapid thermal annealing up to 500 °C. Besides a high capacitance density (~ 5.4 to 6.6 fF/μm2 at 1 kHz), a low value of voltage coefficients of capacitance and a stable temperature coefficient of capacitance have also been obtained in MIM capacitors with TaAlOx films. Degradation phenomenon of TaAlOx-based MIM capacitors under constant current stressing at 20 nA is found to be strongly dependent on dielectric thickness. It is shown that Al-incorporated Ta2O5 (TaAlOx) films with high band gap and good thermal stability, low leakage current and good voltage linearity make it one of the most promising candidates for metal-insulator-metal capacitor applications.  相似文献   

15.
A study was performed to reduce the CdS film thickness in CdTe thin film solar cells to minimize losses in quantum efficiency. Using close space sublimation deposition for CdS and CdTe a maximum efficiency of ~ 9.5% was obtained with the standard CdS film thickness of ~ 160 nm. Reduction of the film CdS thickness to less than 100 nm leads to poor cell performance with ~ 5% efficiency, mainly due to a lower open circuit voltage. An alternative approach has been tested to reduce the CdS film thickness (~ 80 nm) by depositing a CdS double layer. The first CdS layer was deposited at high substrate temperature in the range of 520-540 °C and the second CdS layer was deposited at low substrate temperature of ~ 250 °C. The cell prepared using a CdS double layer show better performance with cell efficiency over 10%. Quantum efficiency measurement confirmed that the improvement in the device performance is due to the reduction in CdS film thickness. The effect of double layer structure on cell performance is also observed with chemical bath deposited CdS using fluorine doped SnO2 as substrate.  相似文献   

16.
The roughness development of Ag film was investigated for potential as a back reflector material in thin film solar cells on flexible stainless steel (STS) substrates. The influence of metal underlayers was evaluated in order to obtain a rough Ag film at a low deposition temperature (≤400 °C). By depositing Ag on a 100 nm Al underlayer to induce Ag–Al alloying, the film roughness was increased three times more than that of Ag films on bare STS at 400 °C. The Ag film deposited on an Al underlayer at 350 °C exhibited 75 nm roughness and uniformly distributed crystallites, which was effective for visible light scattering. The Ag–Al alloy phase was also controlled using the thickness ratio of Ag and Al. The present work clearly demonstrated that an Ag back reflector film with a higher roughness could be fabricated through inserting a metal underlayer at a deposition temperature much lower than the 500 °C that has been reported in earlier works.  相似文献   

17.
Na0.5K0.5NbO3 (NKN) and 10 mol% (Na,K) excess Na0.5K0.5NbO3 (NKN10) thin films on Pt/Ti/SiO2/Si substrate were prepared by chemical solution deposition. Crystallization of NKN10 thin films was confirmed by X-ray diffraction. The (Na,K) excess Na0.5K0.5NbO3 thin film shows a ferroelectric P-E hysteresis loop. Dielectric properties and impedance spectroscopy of thin films were investigated in the frequency range from 0.1 Hz to 100 kHz and the temperature range of 25 ~ 500 °C. By analyzing the complex impedance relaxation with Cole-Cole plots, we found impedance relaxations for the thin film. The contribution of electrical conduction is discussed in relation to grain, grain boundary, and interface effects.  相似文献   

18.
The temperature dependence of the electrical resistivity in (1  x) La0.7Ca0.3MnO3 + xAg composites has been investigated between 5 and 300 K for H = 0 and 3T. Ag addition has increased the conductivity of this system. Curie temperature (TC) is almost independent of Ag content and is ~ 260 K for all the samples, while the metal-insulator transition temperature (TMI) increases with increasing content of Ag. The ρ-T of all samples fit well with the phenomenological percolation approach, which is based on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. In addition, all the samples clearly reveal the unusual low temperature resistivity minimum. Analysis of our results in terms of the model based on charge carrier tunneling between the anti-ferromagnetically coupled grains shows excellent agreement with the experiment data for both H = 0 and 3T.  相似文献   

19.
A home-made radio frequency magnetron sputtering is used to systematically study the structural, electrical, and optical properties of aluminum doped zinc oxide (ZnO:Al) thin films. The intensity of the (002) peak exhibits a remarkable enhancement with increasing film thickness. Upon optimization, we achieved low resistivity of 4.2 × 10− 4 Ω cm and high transmittance of ~ 88% for ZnO:Al films. Based on the present experimental data, the carrier transport mechanism is discussed. It is found that the grain boundary scattering needs to be considered because the mean free path of free carrier is comparable to the grain size. The 80 nm-ZnO:Al thin films are then deposited onto low-frequency inductively coupled plasma fabricated silicon solar cells to assess the effect of ZnO:Al thin films on the performance of the solar cells. Optimized ZnO:Al thin films are identified as transparent and conductive oxide thin film layers.  相似文献   

20.
Han-Ki Kim  Min-Su Yi 《Thin solid films》2009,517(14):4039-4042
The electrical, structural, and optical characteristics of Ag/ZnO-doped In2O3 (IZO) ohmic contacts to p-type GaN:Mg (2.5 × 1017 cm− 3) were investigated. The Ag and IZO (10 nm/50 nm) layers were prepared by thermal evaporation and linear facing target sputtering, respectively. Although the as-deposited and 400 °C annealed samples showed rectifying behavior, the 500 and 600 °C annealed samples showed linear I-V characteristics indicative of the formation of an ohmic contact. The annealing of the contact at 600 °C for 3 min in a vacuum (~ 10− 3 Torr) resulted in the lowest specific contact resistivity of 1.8 × 10− 4 Ω·cm2 and high transparency of 78% at a wavelength of 470 nm. Using Auger electron spectroscopy, depth profiling and synchrotron X-ray scattering analysis, we suggested a possible mechanism to explain the annealing dependence of the electrical properties of the Ag/IZO contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号