首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitogen-activated protein kinase (MAPK) signal transduction pathway plays an essential role in cell cycle progression and can be activated by many growth factor/mitogen pathways including estrogen. MAPK has also been implicated in ligand-independent activation of estrogen receptor-alpha (ER-alpha). The development of estrogen-independent growth in breast cancer is likely a first step in progression to hormone independence and antiestrogen resistance. We examined MAPK expression and activity in T5-PRF and T5 human breast cancer cells. T5-PRF is an estrogen-nonresponsive cell line developed from T5 cells by chronically depleting the cells of estrogen in long-term culture. MAPK activity measured in vitro was significantly higher (P < 0.05) in T5-PRF compared with T5 cells. Western blot analyses showed increased levels of active dually phosphorylated MAPK in T5-PRF cell extracts compared with T5. The increased activity and expression of MAPK may contribute to the estrogen nonresponsive growth phenotype and ligand-independent activity of ER in T5-PRF cells.  相似文献   

2.
Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pathway. Needle biopsies of vastus lateralis muscle were taken from nine subjects at rest and after 60 min of cycle ergometer exercise. In all subjects, exercise increased MAPK phosphorylation, and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2. Furthermore, exercise increased the activities of the upstream regulators of MAPK, MAP kinase kinase, and Raf-1. When two additional subjects were studied using a one-legged exercise protocol, MAPK phosphorylation and p90 ribosomal S6 kinase 2, MAP kinase kinase 1, and Raf-1 activities were increased only in the exercising leg. These studies demonstrate that exercise activates the MAPK cascade in human skeletal muscle and that this stimulation is primarily a local, tissue-specific phenomenon, rather than a systemic response to exercise. These findings suggest that the MAPK pathway may modulate cellular processes that occur in skeletal muscle in response to exercise.  相似文献   

3.
The changes in airway osmolarity have been described to contribute to the production of exercise- induced bronchoconstriction (EIB) and the development of the late-phase response (LPR). The mechanism has been investigated; however, the responsiveness of bronchial epithelial cells (BEC) to hyperosmolarity and the intracellular signals leading to cell activation have not been determined. In this study, we examined the effect of hyperosmolar medium on interleukin-8 (IL-8) expression and the role of p38 mitogen-activated protein (MAP) kinase and c-Jun NH2 terminal kinase ( JNK) in human BEC in this response in order to clarify the intracellular signals regulating IL-8 expression in hyperosmolarity-stimulated BEC. The results showed that hyperosmolarity induced IL-8 expression in a concentration dependent manner, p38 MAP kinase phosphorylation and activation, and JNK activation whether NaCl or mannitol was used as the solute. SB 203580 as the specific p38 MAP kinase inhibitor inhibited hyperosmolarity-induced p38 MAP kinase activation and partially inhibited hyperosmolarity-induced IL-8 expression. These results indicate that p38 MAP kinase, at least in part, regulates hyperosmolarity-induced IL-8 expression in BEC. However, other signals such as JNK are possibly also involved. These results provide new evidence on the mechanism responsible for the development of the LPR induced by EIB, and a strategy for treatment with the specific p38 MAP kinase inhibitor.  相似文献   

4.
Biological effects related to cell growth, as well as a role in the pathogenesis of Alzheimer disease, have been ascribed to the beta-amyloid precursor protein (beta-APP). Little is known, however, about the intracellular cascades that mediate these effects. We report that the secreted form of beta-APP potently stimulates mitogen-activated protein kinases (MAPKs). Brief exposure of PC-12 pheochromocytoma cells to beta-APP secreted by transfected Chinese hamster ovary cells stimulated the 43-kDa form of MAPK by > 10-fold. Induction of a dominant inhibitory form of ras in a PC12-derived cell line prevented the stimulation of MAPK by secreted beta-APP, demonstrating the dependence of the effect upon p21ras. Because the microtubule-associated protein tau is hyperphosphorylated in Alzheimer disease, we sought and found a 2-fold enhancement in tau phosphorylation associated with the beta-APP-induced MAPK stimulation. In the ras dominant inhibitory cell line, beta-APP failed to enhance phosphorylation of tau. The data presented here provide a link between secreted beta-APP and the phosphorylation state of tau.  相似文献   

5.
Overexpression of a constitutively active mitogen-activated protein kinase kinase (MAPKK or MEK) induces neuronal differentiation in adrenal pheochromocytoma 12 cells but transformation in fibroblasts. In the present study, we used a constitutively active MAPK/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) mutant to investigate the function of the highly conserved MEK1-ERK2 signaling module in renal epithelial cell differentiation and proliferation. Stable expression of constitutively active MEK1 (CA-MEK1) in epithelial MDCK-C7 cells led to an increased basal and serum-stimulated ERK1 and ERK2 phosphorylation as well as ERK2 activation when compared with mock-transfected cells. In both mock-transfected and CA-MEK1-transfected MDCK-C7 cells, basal and serum-stimulated ERK1 and ERK2 phosphorylation was almost abolished by the synthetic MEK inhibitor PD098059. Increased ERK2 activation due to stable expression of CA-MEK1 in MDCK-C7 cells was associated with epithelial dedifferentiation as shown by both a dramatic alteration in cell morphology and an abolished cytokeratin expression but increased vimentin expression. In addition, we obtained a delayed and reduced serum-stimulated cell proliferation in CA-MEK1-transfected cells (4.6-fold increase in cell number/cm2 after 5 days of serum stimulation) as compared with mock-transfected controls (12.9-fold increase in cell number/cm2 after 5 days). This result was confirmed by flow cytometric DNA analysis showing that stable expression of CA-MEK1 decreased the proportion of MDCK-C7 cells moving from G0/G1 to G2/M as compared with both untransfected and mock-transfected cells. Taken together, our data demonstrate an association of increased basal and serum-stimulated activity of the MEK1-ERK2 signaling module with epithelial dedifferentiation and growth inhibition in MDCK-C7 cells. Thus, the MEK1-ERK2 signaling pathway could act as a negative regulator of epithelial differentiation thereby leading to an attenuation of MDCK-C7 cell proliferation.  相似文献   

6.
We recently demonstrated that transforming growth factor-beta (TGF-beta) stimulates phosphorylation of the type I inositol 1,4, 5-trisphosphate receptor (Sharma, K., Wang, L., Zhu, Y., Bokkala, S., and Joseph, S. (1997) J. Biol. Chem. 272, 14617-14623), possibly via protein kinase A (PKA) activation in murine mesangial cells. In the present study, we evaluated whether TGF-beta stimulates PKA activation. Utilizing a specific PKA kinase assay, we found that TGF-beta increases PKA activity by 3-fold within 15 min of TGF-beta1 treatment, and the enhanced kinase activity was completely reversed by the inhibitory peptide for PKA (PKI; 1 microM). In mesangial cells transfected with a PKI expression vector, enhanced PKA activity could not be demonstrated with TGF-beta1 treatment. TGF-beta1 was also found to stimulate translocation of the alpha-catalytic subunit of PKA to the nucleus by Western analysis of nuclear protein as well as by confocal microscopy. TGF-beta1-mediated phosphorylation of cAMP response element-binding protein was completely reversed by H-89 (3 microM), a specific inhibitor of PKA. Stimulation of fibronectin mRNA by TGF-beta1 was also attenuated in cells overexpressing PKI. We thus conclude that TGF-beta stimulates the PKA signaling pathway in mesangial cells and that PKA activation contributes to TGF-beta stimulation of cAMP response element-binding protein phosphorylation and fibronectin expression.  相似文献   

7.
We have examined the role of tyrosine phosphorylation in regulation of calcium-dependent chloride secretion across T84 colonic epithelial cells. The calcium-mediated agonist carbachol (CCh, 100 microM) stimulated a time-dependent increase in tyrosine phosphorylation of a range of proteins (with molecular masses ranging up to 180 kDa) in T84 cells. The tyrosine kinase inhibitor, genistein (5 microM), significantly potentiated chloride secretory responses to CCh, indicating a role for CCh-stimulated tyrosine phosphorylation in negative regulation of CCh-stimulated secretory responses. Further studies revealed that CCh stimulated an increase in both phosphorylation and activity of the extracellular signal-regulated kinase (ERK) isoforms of mitogen-activated protein kinase. Chloride secretory responses to CCh were also potentiated by the mitogen-activated protein kinase inhibitor, PD98059 (20 microM). Phosphorylation of ERK in response to CCh was mimicked by the protein kinase C (PKC) activator, phorbol myristate acetate (100 nM), but was not altered by the PKC inhibitor GF 109203X (1 microM). ERK phosphorylation was also induced by epidermal growth factor (EGF) (100 ng/ml). Immunoprecipitation/Western blot studies revealed that CCh stimulated tyrosine phosphorylation of the EGF receptor (EGFr) and increased co-immunoprecipitation of the adapter proteins, Shc and Grb2, with the EGFr. An inhibitor of EGFr phosphorylation, tyrphostin AG1478 (1 microM), reversed CCh-stimulated phosphorylation of both EGFr and ERK. Tyrphostin AG1478 also potentiated chloride secretory responses to CCh. We conclude that CCh activates ERK in T84 cells via a mechanism involving transactivation of the EGFr, and that this pathway constitutes an inhibitory signaling pathway by which chloride secretory responses to CCh may be negatively regulated.  相似文献   

8.
U46619, a thromboxane A2 mimetic, caused tyrosine phosphorylation of several proteins in rabbit platelets. Among them, 42 kDa protein was identified as a mitogen-activated protein kinase (MAPK). U46619 activated MAPK in a concentration-dependent manner, measured by incorporation of 32P to a specific substrate for MAPK. U46619 also liberated [3H] arachidonic acid in a concentration-dependent manner. The U46619-induced MAPK activation and [3H]arachidonic acid liberation were inhibited by SQ29548 and by the removal of external Ca2+ ions. This is a first demonstration that TXA2 activates MAPK accompanied with arachidonic acid liberation in rabbit platelets.  相似文献   

9.
OBJECTIVE: Low serum levels of mannan binding lectin (MBL) are associated with increased risk of recurrent infections. We determined whether there was an association between serum MBL levels and the course and prognosis of rheumatoid arthritis (RA). METHODS: MBL was analyzed in sera from 99 patients with RA who were included in a longterm prospective study. RESULTS: Compared with controls, a high fraction of patients lacked detectable MBL in serum (11 vs 3%; p = 0.025). Comparing patients with MBL serum levels above and below the median revealed that those with levels below the median were younger at onset of RA (p = 0.043) and had higher erythrocyte sedimentation rate (p = 0.006), joint swelling score (p = 0.019), limitation of joint motion score (p = 0.027), and annual increase in radiographic destruction score (p = 0.053). CONCLUSION: MBL insufficiency may be a contributing pathogenetic factor in RA.  相似文献   

10.
We previously observed that glucose deprivation induces cell death in multidrug-resistant human breast carcinoma cells (MCF-7/ADR). As a follow up we wished to test the hypothesis that metabolic oxidative stress was the causative process or at least the link between causative processes behind the cytotoxicity. In the studies described here, we demonstrate that mitogen-activated protein kinase (MAPK) was activated within 3 min of being in glucose-free medium and remained activated for 3 h. Glucose deprivation for 2-4 h also caused oxidative stress as evidenced by a 3-fold greater steady state concentration of oxidized glutathione and a 3-fold increase in pro-oxidant production. Glucose and glutamate treatment rapidly suppressed MAPK activation and rescued cells from cytotoxicity. Glutamate and the peroxide scavenger, pyruvate, rescued the cells from cell killing as well as suppressed pro-oxidant production. In addition the thiol antioxidant, N-acetyl-L-cysteine, rescued cells from glucose deprivation-induced cytotoxicity and suppressed MAPK activation. These results suggest that glucose deprivation-induced cytotoxicity and alterations in MAPK signal transduction are mediated by oxidative stress in MCF-7/ADR. These results also support the speculation that a common mechanism of glucose deprivation-induced cytotoxicity in mammalian cells may involve metabolic oxidative stress.  相似文献   

11.
PD98059, a specific inhibitor of MEK-1 mitogen-activated protein (MAP) kinase kinase, blocked Listeria monocytogenes invasion into HeLa epithelial cells. The effects of PD98059 were reversible, as adherent extracellular bacteria were internalized upon removal of the drug. Previously, we reported that L. monocytogenes could activate ERK-1 and ERK-2 MAP kinases through the action of listeriolysin O (LLO) on the host cell (P. Tang, I. Rosenshine, P. Cossart, and B. B. Finlay, Infect. Immun. 64:2359-2361, 1996). We have now found that two other MAP kinase pathways, those of p38 MAP kinase and c-Jun N-terminal kinase, are also activated by wild-type L. monocytogenes. Mutants lacking functional LLO (hly mutants) were still invasive but only activated ERK-2 and only activated it at later (90-min) postinfection times. Two inhibitors of L. monocytogenes invasion, cytochalasin D, which disrupts actin polymerization, and wortmannin, which blocks phosphatidylinositol (PI) 3-kinase activity, did not block ERK-2 activation by wild-type L. monocytogenes and hly mutants. However, genistein, an inhibitor of tyrosine kinases, and PD98059 both blocked invasion and decreased ERK-2 activation. These results suggest that MEK-1 and ERK-2 activities are essential for L. monocytogenes invasion into host epithelial cells. This is the first report to show that a MAP kinase pathway is required for bacterial invasion.  相似文献   

12.
The ability of a peptide hormone to affect many different intracellular targets is thought to be possible because of the modular organization of signal transducing molecules in the cell. Evidence for the presence of signaling modules in metazoan cells, however, is incomplete. Herein we show, with morphology and cell fractionation, that all the components of a mitogen-activated protein kinase pathway are concentrated in caveolae of unstimulated human fibroblasts. Addition of platelet-derived growth factor to either the intact cell or caveolae isolated from these cells stimulates tyrosine phosphorylation and activates mitogen-activated protein kinases in caveolae. The molecular machinery for kinase activation, therefore, is preorganized at the cell surface of quiescent cells.  相似文献   

13.
Drug design targeted at microtubules has led to the advent of some potent anti-cancer drugs. In the present study, we demonstrated that microtubule-binding agents (MBAs) taxol and colchicine induced immediate early gene (c-jun and ATF3) expression, cell cycle arrest, and apoptosis in the human breast cancer cell line MCF-7. To elucidate the signal transduction pathways that mediate such biological activities of MBAs, we studied the involvement of mitogen-activated protein (MAP) kinases. Treatment with taxol, colchicine, or other MBAs (vincristine, podophyllotoxin, nocodazole) stimulated the activity of c-jun N-terminal kinase 1 (JNK1) in MCF-7 cells. In contrast, p38 was activated only by taxol and none of the MBAs changed the activity of extracellular signal-regulated protein kinase 2 (ERK2). Activation of JNK1 or p38 by MBAs occurred subsequent to the morphological changes in the microtubule cytoskeleton induced by these compounds. Furthermore, baccatine III and beta-lumicolchicine, inactive analogs of taxol and colchicine, respectively, did not activate JNKI or p38. These results suggest that interactions between microtubules and MBAs are essential for the activation of these kinases. Pretreatment with the antioxidants N-acetyl-L-cysteine (NAC), ascorbic acid or vitamin E, blocked H2O2- or doxorubicin-induced JNKI activity, but had no effect on JNKI activation by MBAs, excluding a role for oxidative stress. However, BAPTA/AM, a specific intracellular Ca2+ chelator, attenuated JNK1 activation by taxol but not by colchicine, and had no effect on microtubule changes induced by taxol. Thus, stabilization or depolymerization of microtubules may regulate JNK1 activity via distinct downstream signaling pathways. The differential activation of MAP kinases opens up a new avenue for addressing the mechanism of action of antimicrotubule drugs.  相似文献   

14.
Overexpression and amplification of hepatocyte growth factor (HGF) receptor (Met) have been detected in many types of human cancers, suggesting a critical role for Met in growth and development of malignant cells. However, the molecular mechanism by which Met contributes to tumorigenesis is not well known. The tyrosine kinase c-Src has been implicated as a modulator of cell proliferation, spreading, and migration; these functions are also regulated by Met. To explore whether c-Src kinase is involved in HGF-induced cell growth, a mouse mammary carcinoma cell line (SP1) that co-expresses HGF and Met and a nonmalignant epithelial cell line (Mv1Lu) that expresses Met but not HGF were used. In this study, we have shown that c-Src kinase activity is constitutively elevated in SP1 cells and is induced in response to HGF in Mv1Lu cells. In addition, c-Src kinase associates with Met following stimulation with HGF. The enhanced activity of c-Src kinase also correlates with its ability to associate with Met. Expression of a dominant negative double mutant of c-Src (SRC-RF), lacking both kinase activity (K295R) and a regulatory tyrosine residue (Y527F), in SP1 cells significantly reduced c-Src kinase activity and strongly blocked HGF-induced motility and colony growth in soft agar. In contrast, expression of the dominant negative c-Src mutant had no effect on HGF-induced cell proliferation on plastic. Taken together, our data strongly suggest that HGF-induced association of c-Src with Met and c-Src activation play a critical role in HGF-induced cell motility and anchorage-independent growth of mammary carcinomas and further support the notion that the presence of paracrine and autocrine HGF loops contributes significantly to the transformed phenotype of carcinoma cells.  相似文献   

15.
The ErbB-2 receptor has been strongly implicated in the development of breast cancer. To establish a new model system to investigate the role of erbB-2 in tumorigenesis of the breast, the conditionally immortalised human mammary luminal epithelial cell line HB4a was transfected with erbB-2 cDNA. Biological and biochemical characterisation of the resulting cell lines demonstrated that high levels of ErbB-2 expression were sufficient to cause transformation in vitro but did not cause tumours in vivo. Transformation by overexpression of ErbB-2 correlated with ligand-independent tyrosine phosphorylation of ErbB-2 and the adaptor protein Shc. Over-expression of ErbB-2 also resulted in the ligand-independent constitutive association between Shc and another adaptor protein, Grb2, indicating that receptor activation was sufficient to activate downstream signalling pathways. Using the model described, it was found that elevation of ErbB-2 expression levels caused marked quantitative and qualitative alterations in responses to the ligands epidermal growth factor and heregulin. Data indicate a central role for ErbB-2 in mediating the responses induced by these ligands and suggest that these altered ligand-dependent responses play an important role in tumorigenesis in vivo.  相似文献   

16.
UCN-01 is a derivative of staurosporine, initially developed as a potentially selective inhibitor of the Ca(2+)- and phospholipid-dependent protein kinase C, but with the capacity to inhibit a number of tyrosine and serine/threonine kinases. UCN-01 inhibits the growth of 5 breast carcinoma cell lines with a 50% inhibitory concentration range of 30-100 nM during 6 days of continuous exposure. In MCF-7, MDA-MB453, and SK-BR-3 cells, UCN-01 is 5-fold more potent in growth inhibition than its diastereomer UCN-02, but the 2 compounds are equipotent in the inhibition of MDA-MB468 and H85787 cell growth. A differential sensitivity to a 24-h period of exposure to UCN-01 followed by drug removal and growth for 5 subsequent days was observed. The rank order for persistent inhibition of cells by UCN-01 was MCF-7, MDA-MB453 > SK-BR-3 > H85787 > MDA-MB468. MCF-7 and MDA-MB453 cells did not resume proliferation within the 5 days after brief exposure to UCN-01. In contrast, MDA-MB468 and H85787 cells showed no net growth inhibition after a 24-h pulse of UCN-01, followed by 5 more days of growth in drug-free medium. In MDA-MB468 cells, 150 nM UCN-01 retards but does not prevent cell cycle progression through S phase, but the cells are clearly blocked from exit of G1 and entry into S. Progression through S phase is completely inhibited by 600 nM UCN-01. The development of a G1 to S block by UCN-01 in MDA-MB468 cells occurs in conjunction with inhibition of [32P]orthophosphate labeling and decreased phosphotyrosine mass of discrete cellular phosphoproteins.  相似文献   

17.
In human breast cancer MCF-7 and MCF-7ras cells, we demonstrated that whereas insulin had a mitogenic effect on both cell lines, fibroblast growth factor-2 (FGF-2) had opposite effects, stimulating MCF-7 and inhibiting MCF-7ras cell proliferation. The inhibitory signal induced by FGF-2 was related to sustained mitogen-activated protein kinase (MAPK) activation in MCF-7ras cells, while transient MAPK activation was associated with MCF-7 cell proliferation. FGF-2 was further used in combination with insulin or cAMP. In MCF-7 cells, insulin and cAMP reversed the mitogenic effect of FGF-2. In MCF-7ras cells, insulin did not modify the inhibitory effect of FGF-2, but cAMP markedly enhanced it. These effects were also associated with an increased level and duration of MAPK activation. PD98056 abolished the effect of FGF-2 on DNA synthesis in both cell lines, demonstrating that the dual effect of FGF-2 on cell proliferation is dependent on the activity of the extracellular-signal-regulated kinase 1 and 2 (ERK1/2) signalling pathway.  相似文献   

18.
Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1-5 microM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50 approximately 10 microM) than that induced by nicotine (IC50 approximately 30 microM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal, secretion induced by nicotine.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号