首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Based on plastic instability, an analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is an irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria – diffuse necking criteria for a sheet, and a tube, and a local necking criterion for a sheet – are introduced. The incremental theory of plasticity for an anisotropic material is adopted and the hydroforming limit, as well as a diagram of bursting failure with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of material properties such as anisotropy parameter, strain hardening exponent and strength coefficient on plastic instability and bursting pressure are investigated. As a result of the above approach, the hydroforming limit with respect to bursting failure is verified with experimental results.  相似文献   

2.
Analytical and numerical analyses of forming limit in tube hydroforming under combined internal pressure and independent axial feeding are discussed in this paper. To predict the initiation of necking, Swift's criterion for diffuse plastic instability is adopted based on Hill's general theory for the uniqueness to the boundary value problem. In addition, in order to predict fracture initiation, Oyane's ductile fracture criterion is introduced and evaluated from the histories of stress and strain calculated by means of finite element analysis. From the comparison with a series of tube bulge tests, the prediction of the bursting failure based on the plastic instability and the ductile fracture criterion demonstrates to be reasonable so that these approaches can be extended to a wide range of practical tube hydroforming processes.  相似文献   

3.
In this paper, plastic instabilities of elasto–plastic tubes subject to internal pressure are discussed. For diffuse necking prediction, the classical intrinsic criteria for diffuse necking are accurate for long cylindrical tubes. However, for short tubes, geometric changes are important, and the intrinsic criteria become insufficient. For this purpose, a new diffuse necking criteria is proposed including geometric effects in the prediction.On the other hand, for the local necking prediction, the Hill's criterion is not accurate for short tubes, due to the biaxial stretching. As an alternative, a local necking criterion based on a modified Hill's assumption for localized necking is proposed. The numerical calculations carried out for different tube dimensions, explains the geometrical effects on the localization of deformations for pressurized tubes, and improves the accuracy of the proposed criteria.  相似文献   

4.
Coupled buckling and plastic instability for tube hydroforming   总被引:1,自引:0,他引:1  
In this paper, the hydroforming limit of isotropic tubes subjected to internal hydraulic pressure and independent axial load is discussed.Swift's criterion is often used in this case for the prediction of diffuse plastic instability. Here, we first highlight the existence of two different Swift's criteria (for sheets and for tubes).Then, we recall that these types of approaches do not take into account buckling induced by axial loading. In fact, buckling may obviously occur before plastic instability; consequently, Swift's criteria must not be used alone to predict instability in the case of tube hydroforming.Numerical simulation was used to confirm these points and to analyse both the buckling and striction phenomena together. The two types of instability must be treated together in a reasonable approach to the hydroforming process.In this paper, the material verifies a “J2-flow” constitutive rate constitutive law. Jaumann's derivative was chosen and the Prandtl–Reuss equations with von Mises’ yield criterion and the associated flow rule were used. Isotropic hardening was taken into account.  相似文献   

5.
The most common failure in tube hydroforming is the bursting failure due to excessive thinning of large deformation. To evaluate the forming limit of hydroforming processes, the Oyane's ductile fracture integral I was introduced and calculated from the histories of stress and strain according to every element by using the rigid–plastic finite element method. The region of fracture initiation and the forming limit for three hydroforming processes, such as a tee extrusion, an automobile rear axle housing, and a lower arm under different forming conditions are predicted in this study. Also it is shown that the material parameters used in the ductile failure can be obtained from the experimental forming limit diagram. From the results, the prediction of the bursting failure and the plastic deformation for the three hydroforming examples demonstrates to be reasonable so that this approach can be extended to a wide range of practical tube hydroforming processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号