首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of degraded availability is introduced, and the required definitions and assumptions are presented. Appropriate metrics are formulated for the quantification of degraded availability at function, mission and system level. This degraded availability model is an extension to the model for availability of multifunctional systems (Sols, A., Availability of continuously operated, coherent, multifunctional systems. Master's thesis, Virginia Polytechnic Institute and State University, 1992).  相似文献   

2.
The modern world requires high reliability and availability with minimum ownership cost for complex industrial systems (high-value assets). Maintenance and mission planning are two major interrelated tasks affecting availability and ownership cost. Both tasks play critical roles in cost savings and effective utilization of the assets, and cannot be performed without taking each other into consideration. Maintenance schedule may make an asset unavailable or too risky to use for a mission. Mission type and duration affect the health of the system, which affects the maintenance schedule. This article presents a mathematical formulation for integrated maintenance and mission planning for a fleet of high-value assets, using their current and forecast health information. An illustrative example for a fleet of unmanned aerial vehicles is demonstrated and evolutionary-based solutions are presented.  相似文献   

3.
Through the application of statistical models, the active mission success estimation (AMSE) introduced in this paper can be performed during a rapidly developing unanticipated failure scenario to support decision making. AMSE allows for system operators to make informed management and control decisions by performing analyses on a nested system of functional models that requires low time and computational cost. Existing methods for analyses of mission success such as probabilistic risk assessment or worst case analysis have been applied in the analysis and planning of space missions since the mid-twentieth century. While these methods are effective in analyzing anticipated failure scenarios, they are built on computational models, logical structures, and statistical models that often are difficult and time-intensive to modify, and are computationally inefficient leading to very long calculation times and making their ability to respond to unanticipated or rapidly developing scenarios limited. To demonstrate AMSE, we present a case study of a generalized crewed Martian surface station mission. A crew of four astronauts must perform activities to achieve scientific objectives while surviving for 1070 Martian sols before returning to Earth. A second crew arrives at the same site to add to the settlement midway through the mission. AMSE uses functional models to represent all of the major environments, infrastructure, equipment, consumables, and critical systems of interest (astronauts in the case study presented) in a nested super system framework that is capable of providing rapidly reconfigurable and calculable analysis. This allows for AMSE to be used to make informed mission control decisions when facing rapidly developing or unanticipated scenarios. Additionally, AMSE provides a framework for the inclusion of humans into functional analysis through a systems approach. Application of AMSE is expected to produce informed decision making benefits in a variety of situations where humans and machines work together toward mission goals in uncertain and unpredictable conditions.  相似文献   

4.
Mastering system availability all along the system life cycle is now a critical issue with regards to systems engineering. It is more true for military systems which operate in a battle context. Indeed as they must act in a hostile environment, they can become unavailable due to failures of or damage to the system. In both cases, system regeneration is required to restore its availability. Many approaches based on system modelling have been developed to assess availability. However, very few of them take battlefield damage into account and relevant methods for the model development are missing. In this paper, a modelling method for architecture of weapon system of systems that supports regeneration engineering is proposed. On the one hand, this method relies on a unified failure/damage approach to extend acknowledged availability models. It allows to integrate failures, damages, as well as the possibility of regeneration, into operational availability assessment. Architectures are modelled as a set of operational functions, supported by components that belong to platform (system). Modelling atoms (i.e. elementary units of modelling) for both the architecture components and functions are defined, based on state-space formalism. Monte Carlo method is used to estimate availability through simulation. Availability of the architecture is defined on the basis of the possible states of the required functions for a mission. The states of a function directly depend on the state of the corresponding components (i.e. the components that support the function). Aggregation rules define the state of the function knowing the states of each component. Aggregation is defined by means of combinatorial equations of the component states. The modelling approach is supported by means of stochastic activity network for the models simulation. Results are analysed in terms of graphs of availability for mission's days. Thus, given the simulation results, it is possible to plan combat missions based on criteria such as the number of platforms to be involved given functions required for the mission or the mean of regeneration to be deployed given the possible threats. Further, the simulation will help towards the design of improved architecture of system of systems which could focus on the factors affecting the availability.  相似文献   

5.
Predictive maintenance (PdM) is an effective means to eliminate potential failures, ensure stable equipment operation and improve the mission reliability of manufacturing systems and the quality of products, which is the premise of intelligent manufacturing. Therefore, an integrated PdM strategy considering product quality level and mission reliability state is proposed regarding the intelligent manufacturing philosophy of ‘prediction and manufacturing’. First, the key process variables are identified and integrated into the evaluation of the equipment degradation state. Second, the quality deviation index is defined to describe the quality of the product quantitatively according to the co-effect of manufacturing system component reliability and product quality in the quality–reliability chain. Third, to achieve changeable production task demands, mission reliability is defined to characterise the equipment production states comprehensively. The optimal integrated PdM strategy, which combines quality control and mission reliability analysis, is obtained by minimising the total cost. Finally, a case study on decision-making with the integrated PdM strategy for a cylinder head manufacturing system is presented to validate the effectiveness of the proposed method. The final results shows that proposed method achieves approximately 26.02 and 20.54% cost improvement over periodic preventive maintenance and conventional condition-based maintenance respectively.  相似文献   

6.
The flight control system of a launch vehicle is the result of the right tradeoff between different objectives, such as the interaction between the control, guidance and performance aspects of a mission with specified end conditions and the analysis of the mission trajectories and vehicle systems under a variety of normal and failure modes. Hence an evaluation of the design and performance of such a system is not feasible through purely analytical means even with simplified models. This, together with the necessity for step-by-step refinement of the models used for the vehicle and its environment, calls for the computer simulation approach. The various considerations involved in developing and selecting the simulation model and implementing it on a computer are discussed. To illustrate the approach, a hybrid simulation evaluation of the performance of the first stage control system of a satellite launch vehicle and that of the controlled vehicle under different operational modes is presented.  相似文献   

7.
Phased missions consist of consecutive operational phases where the system logic and failure parameters can change between phases. A component can have different roles in different phases and the reliability function may have discontinuities at phase boundaries. An earlier method required NOT-gates and negations of events when calculating importance measures for such missions with non-repairable components. This paper suggests an exact method that uses standard fault tree techniques and Boolean algebra without any NOT-gates or negations. The criticalities and other importance measures can be obtained for events and components relevant to a single phase or to a transition between phases or over the whole mission. The method and importance measures are extended to phased missions with repairable components. Quantification of the reliability, the availability, the failure intensity and the total number of failures are described. New importance indicators defined for repairable systems measure component contributions to the total integrated unavailability, to the mission failure intensity and to the total number of mission failures.  相似文献   

8.
In this paper, we presented a continuous‐time Markov process‐based model for evaluating time‐dependent reliability indices of multi‐state degraded systems, particularly for some automotive subsystems and components subject to minimal repairs and negative repair effects. The minimal repair policy, which restores the system back to an “as bad as old” functioning state just before failure, is widely used for automotive systems repair because of its low cost of maintenance. The current study distinguishes with others that the negative repair effects, such as unpredictable human error during repair work and negative effects caused by propagated failures, are considered in the model. The negative repair effects may transfer the system to a degraded operational state that is worse than before due to an imperfect repair. Additionally, a special condition that a system under repair may be directly transferred to a complete failure state is also considered. Using the continuous‐time Markov process approach, we obtained the general solutions to the time‐dependent probabilities of each system state. Moreover, we also provided the expressions for several reliability measures include availability, unavailability, reliability, mean life time, and mean time to first failure. An illustrative numerical example of reliability assessment of an electric car battery system is provided. Finally, we use the proposed multi‐state system model to model a vehicle sub‐frame fatigue degradation process. The proposed model can be applied for many practical systems, especially for the systems that are designed with finite service life.  相似文献   

9.
基于结构方程的棕地再开发评价指标体系优化   总被引:1,自引:0,他引:1  
科学评价的前提是建立一个客观、有效的评价指标体系。为更好的对棕地再开发进行评价,利用结构方程模型对棕地再开发评价指标体系进行优化验证及修正。根据前续的研究,从4个维度出发初步构建了棕地再开发评价指标体系,对初步构建的指标体系进行优化,形成了6个维度的新评价指标体系。利用结构方程模型进行优化效果验证:通过参数检验验证了2个指标体系模型整体性评价的适用性;再通过绝对拟合指数、相对拟合指数、简约拟合指数的计算对其进行模型整体性评价,并与评价标准对比,从而验证了指标体系的优化效果。根据修正指数对模型进行修正,为后续指标体系权重的确定奠定基础。  相似文献   

10.
Because of the environments in which they will operate, future autonomous systems must be capable of reconfiguring quickly and safely following faults or environmental changes. Past research has shown how, by considering autonomous systems to perform phased missions, reliability analysis can support decision making by allowing comparison of the probability of success of different missions following reconfiguration. Binary decision diagrams (BDDs) offer fast, accurate reliability analysis that could contribute to real‐time decision making. However, phased mission analysis using existing BDD models is too slow to contribute to the instant decisions needed in time‐critical situations. This paper investigates 2 aspects of BDD models that affect analysis speed: variable ordering and quantification efficiency. Variable ordering affects BDD size, which directly affects analysis speed. Here, a new ordering scheme is proposed for use in the context of a decision‐making process. Variables are ordered before a mission, and reordering is unnecessary no matter how the mission configuration changes. Three BDD models are proposed to address the efficiency and accuracy of existing models. The advantages of the developed ordering scheme and BDD models are demonstrated in the context of their application within a reliability analysis methodology used to support decision making in an unmanned aerial vehicle.  相似文献   

11.
A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.  相似文献   

12.
In practical data production process of ZiYuan-3 (ZY-3) optical satellite, the quality of massive panchromatic (PAN) products is usually measured with multiple quality metrics. Although the existing metrics have been widely used in practice and obtained good performance, they have some limitations: (1) there are so many quality metrics that makes it difficult for users or operators to directly judge whether the imagery is acceptable or not; and (2) a specific quality metric can only measure a certain aspect of image quality and is often not designed from the perspective of human visual system (HVS), leading the objective evaluation result inconsistent with subjective one. To tackle the aforementioned problems, we propose an integrated visual quality assessment (VQA) method to predict comprehensive quality scores for ZY-3 sensor calibration (SC) PAN products. In the proposed method: (1) we exploited eight quality elements that have significant influences on the visual quality of SC PAN products; (2) we constructed a database composed of 360 ZY-3 SC PAN images and the corresponding subjective mean opinion scores (MOS); (3) we introduced generalised regression neural network to combine the extracted quality elements of the images and their MOS and obtained the integrated VQA result. Experimental results on the database showed that the proposed method achieved high accuracy of predicted quality scores and well consistency with HVS, indicating the effectiveness and reliability of the presented approach.  相似文献   

13.
The high cost and extraordinary demands made on sophisticated air defence systems, pose hard challenges to the managers and engineers who plan the operation and maintenance of such systems. This paper presents a study aimed at developing simulation and systems analysis techniques for the effective planning and efficient operation of small fleets of aircraft, typical of the air force of a developing country. We consider an important aspect of fleet management: the problem of resource allocation for achieving prescribed operational effectiveness of the fleet. At this stage, we consider a single flying-base, where the operationally ready aircraft are stationed, and a repair-depot, where the planes are overhauled. An important measure of operational effectiveness is ‘ availability ’, which may be defined as the expected fraction of the fleet fit for use at a given instant. The tour of aircraft in a flying-base, repair-depot system through a cycle of ‘ operationally ready ’ and ‘ scheduled overhaul ’ phases is represented first by a deterministic flow process and then by a cyclic queuing process. Initially the steady-state availability at the flying-base is computed under the assumptions of Poisson arrivals, exponential service times and an equivalent singleserver repair-depot. This analysis also brings out the effect of fleet size on availability. It defines a ‘ small ’ fleet essentially in terms of the important ‘ traffic ’ parameter of service rate/maximum arrival rate. A simulation model of the system has been developed using GPSS to study sensitivity to distributional assumptions, to validate the principal assumptions of the analytical model such as the single-server assumption and to obtain confidence intervals for the statistical parameters of interest.  相似文献   

14.
We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft.  相似文献   

15.
Importance measures are integral parts of risk assessment for risk‐informed decision making. Because the parameters of a risk model, such as the component failure rates, are functions of time and a perturbation (change) in their values can occur during the mission time, time dependence must be considered in the evaluation of the importance measures. In this paper, it is shown that the change in system performance at time t, and consequently the importance of the parameters at time t, depends on the parameters perturbation time and their value functions during the system mission time. We consider a nonhomogeneous continuous time Markov model of a series‐parallel system to propose the mathematical proofs and simulations, while the ideas are also shown to be consistent with general models having nonexponential failure rates. Two new measures of importance and a simulation scheme for their computation are introduced to account for the effect of perturbation time and time‐varying parameters.  相似文献   

16.
Assessing the quality of scientific conferences is an important and useful service that can be provided by digital libraries and similar systems. This is specially true for fields such as Computer Science and Electric Engineering, where conference publications are crucial. However, the majority of the existing quality metrics, particularly those relying on bibliographic citations, has been proposed for measuring the quality of journals. In this article we conduct a study about the relative performance of existing journal metrics in assessing the quality of scientific conferences. More importantly, departing from a deep analysis of the deficiencies of these metrics, we propose a new set of quality metrics especially designed to capture intrinsic and important aspects related to conferences, such as longevity, popularity, prestige, and periodicity. To demonstrate the effectiveness of the proposed metrics, we have conducted two sets of experiments that contrast their results against a “gold standard” produced by a large group of specialists. Our metrics obtained gains of more than 12% when compared to the most consistent journal quality metric and up to 58% when compared to standard metrics such as Thomson’s Impact Factor.  相似文献   

17.
Uncertain population behaviors in a regional emergency could potentially harm the performance of the region's transportation system and subsequent evacuation effort. The integration of behavioral survey data with travel demand modeling enables an assessment of transportation system performance and the identification of operational and public health countermeasures. This paper analyzes transportation system demand and system performance for emergency management in three disaster scenarios. A two-step methodology first estimates the number of trips evacuating the region, thereby capturing behavioral aspects in a scientifically defensible manner based on survey results, and second, assigns these trips to a regional highway network, using geographic information systems software, thereby making the methodology transferable to other locations. Performance measures are generated for each scenario including maps of volume-to-capacity ratios, geographic contours of evacuation time from the center of the region, and link-specific metrics such as weighted average speed and traffic volume.  相似文献   

18.
The mission success probability (MSP) is a critical indicator for phased mission systems (PMSs). In the modern aerospace industry, redundancy techniques, including component/phase redundancy, are commonly seen to increase the MSP of the whole system. These component/phase redundancies make the reliability analysis more complex. Meanwhile, one or more components are required for normal working for different subsystems, called the K/N structure. In this article, a Markov-process method is proposed for PMS with K/N subsystems and different redundancy strategies. Then, a universal system optimization model is proposed to optimize system structure and redundancy strategies for all subsystems at the same time. Then, an improved genetic algorithm (GA) is used to resolve the optimization problem. At last, a propulsion system is used as an engineering case, showing the proposed binary decision diagram-based method.  相似文献   

19.
ESA's Darwin mission is an Infrared Space Interferometer that will search for terrestrial planets in orbit around other stars. It uses six free-flying telescopes that are stabilized with respect to each other to less than 10 nm by utilizing micro-Newton ion thrusters. As a consequence, hardly any vibration of the optical system with integrated cryocoolers can be tolerated. A sorption cooler is a favorite cooler option because it has no moving parts and it is, therefore, essentially vibration-free. An efficient two-stage helium/hydrogen sorption cooler is proposed with a cooling power of 10 mW at 5 K. It needs only 3 W of input power and applies two passive radiators at 50 and 70 K. Application of such low-temperature radiators is made possible by Darwin's far-away orbit L2 where earth-radiation is limited.In this paper, first Darwin's cooler requirements are discussed and different cryocooler options are compared. Next, sorption cooler operation is explained, after which six different sorption cooler configurations are described and compared.  相似文献   

20.
《工程(英文)》2018,4(4):567-573
Traditional optimization models often lack a systems-level perspective at conception, which limits their effectiveness. Expanding system boundaries allow scientists and engineers to model complex interactions more accurately, leading to higher efficiency and profitability in industrial systems. Ecological systems have evolved for billions of years under conditions of material and energy shortage, and ecologists have defined analysis tools and metrics for identifying important principles. These principles may provide the framework to circumvent the limitations of traditional optimization techniques. More specifically, by recruiting functional roles that are often found in ecological systems, but are absent in industrial systems, industries can better mimic how natural systems organize themselves. The objective of this analysis is to traditionally optimize a manufacturing process by comparing the model with ecological and resource-based performance metrics in order to redesign the model with the addition of important functional roles that are found throughout nature. Industry partners provided data for this analysis, which involved building a water network for an existing steel manufacturing facility in China. The results of the traditional optimization model indicate a 23%, 29%, and 20% decline in freshwater consumption, wastewater discharge, and total annual cost, respectively. However, our ecologically inspired optimization model provides an additional 21% and 25% decline in freshwater consumption and total annual cost, respectively. Furthermore, no water is discharged. These results suggest that this unconventional approach to optimization could provide an effective technique not used by existing algorithms to solve the challenging problem of pursuing more sustainable industrial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号