首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
《国际计算机数学杂志》2012,89(9):1186-1211
This paper considers the problem of pricing options with early-exercise features whose pay-off depends on several sources of uncertainty. We propose a stochastic grid method for estimating the optimal exercise policy and use this policy to obtain a low-biased estimator for high-dimensional Bermudan options. The method has elements of the least-squares method (LSM) of Longstaff and Schwartz [Valuing American options by simulation: A simple least-squares approach, Rev. Finan. Stud. 3 (2001), pp. 113–147], the stochastic mesh method of Broadie and Glasserman [A stochastic mesh method for pricing high-dimensional American option, J. Comput. Finance 7 (2004), pp. 35–72], and stratified state aggregation along the pay-off method of Barraquand and Martineau [Numerical valuation of high-dimensional multivariate American securities, J. Financ. Quant. Anal. 30 (1995), pp. 383–405], with certain distinct advantages over the existing methods. We focus on the numerical results for high-dimensional problems such as max option and arithmetic basket option on several assets, with basic error analysis for a general one-dimensional problem.  相似文献   

2.
近年来电子设计自动化(EDA)研究人员尝试利用图形处理器(graphic processing unit,GPU)提供的高性能计算能力对IC参数分析进行加速研究.为了利用GPU进行电源线/地线网络(power/ground network,P/G网)快速分析,设计了一种基于经典的连续过松弛(successive over-relaxation,SOR)算法的高效P/G网分析并行算法.基于GPU并行计算加速原理,此算法进行了如下改进:1)采用红-黑次序的松弛策略.将所有的节点分为红黑两类,红色节点的所有邻点只有黑色节点、黑色节点的所有邻点只有红色节点,红色节点与黑色节点交替松弛,保证了GPU并行计算中的数据一致性.对于具有N个节点的P/G网而言,一次红色节点或黑色节点松弛可以同时对N/2个节点进行松弛操作,即理论上可以同时启动N/2个并行线程.2)优化数据结构.实现了对数据空间的合并访问,以保证对GPU全局存储空间的最优访问.3)在共享存储器内通过并行归约对松弛标记进行快速统计,同时利用zero-copy技术进行松弛标记的快速拷贝,以快速决定是否继续松弛.大量的实验结果表明:与单线程的CPU程序相比,此算法的加速倍数随GPU所提供物理线程的数目增加而线性增加,可以获得最大242倍的加速效果,是目前EDA研究领域中加速效果最好的GPU算法.  相似文献   

3.
GPU可以快速有效的处理海量数据,因此在近些年成为图形图像数据处理领域的研究热点。针对现有GPU渲染中在处理含有大量相同或相似模型场景时存在资源利用率低下和带宽消耗过大的问题,在原有GPU渲染架构的基础上提出了一种基于CUDA的加速渲染方法。在该方法中,根据现有的GPU渲染模式构建对应的模型,通过模型找出其不足,从而引申出常量内存的概念;然后分析常量内存的特性以及对渲染产生的作用,从而引入基于常量内存控制的方法来实现渲染的加速,整个渲染过程可以通过渲染算法进行控制。实验结果表明,该方法对解决上述问题具有较好的效果,最终实现加速渲染。  相似文献   

4.
对MS-Alignment算法进行分析得出该算法很难满足大规模数据对鉴定速度的要求,而且具有的一个特点是相同的任务在不同的数据上重复计算,为数据划分提供了基础。基于CUDA编程模型使用图形处理器(GPU)对步骤数据库检索及候选肽段生成进行加速优化,设计了该步骤在单GPU上的实现方法。测试结果表明,此方法平均加速比为30倍以上,效果良好,可以满足蛋白质翻译后修饰鉴定中大规模数据快速计算的需求。  相似文献   

5.
时间序列大数据记录着复杂系统在时间和空间上大尺度的演化过程,详细描述了系统不同部分之间的相互作用和相互联系.提取时间序列大数据中潜在的低维因子对研究复杂系统的整体机制有着至关重要的作用.大数据的超高维和大尺度导致许多传统因子分析方法难以适应,先验知识缺乏更增加了研究难度.针对这一巨大挑战,提出了一种面向时间序列大数据的海量并行贝叶斯因子化分析方法(the massively parallel Bayesian factorization approach, G-BF).在缺失先验知识的情况下,通过贝叶斯算法导出因子矩阵,将算法映射至CUDA(compute unified device architecture)模型,以大规模并行的方式更新因子矩阵.该方法支持对任意维度张量的因子分解.实验结果表明:1)与通过GPU加速化的因子分解算法G-HALS(GPU-hierarchical alternative least square)相比,G-BF具有更好的运行性能,且随着数据规模的增加,其性能优越性更加明显;2)G-BF在数据处理规模、秩及维度方面都具有良好的可扩展性;3)将G-BF应用于现有子因子融合框架(hierarchical-parallel factor analysis, H-PARAFAC),可将“巨型”张量作为一个整体进行因子化分解(在2个节点上处理10\\+{11}个数据元素),其能力较常规方法高出2个数量级.  相似文献   

6.
基于CUDA的汇流分析并行算法的研究与实现*   总被引:2,自引:0,他引:2  
针对基于数字高程模型(DEM)生成流域等流时线的快速运算问题,提出了一种基于统一设备计算架构(CUDA)平台同时可发挥图形处理器(GPU)并行运算特性的汇流分析的快速并行算法。采用改进后的归并排序算法进行数据排序及新的内存分配策略和改进的并行算法进行汇流分析。用该并行算法和CPU上的串行算法, 对生成基于DEM的等流时线运算时间和矩阵乘法运算时间进行分析验证。实验结果表明,基于CUDA的汇流分析并行算法能提高系统的计算效率,具有较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号