首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对撞流干燥的实验与理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
The experiments of one-stage semi-circular and two-stage semi-circular impinging stream drying as well as the vertical and semi-cricular combined impinging stream drying were carried out.The velocity distribution and the mean residence time of particles,and the influence of various factors on drying characteristics were studied.A mathematical model of granular material drying in a semi-circular impinging stream dryer was proposed,in which the flow characteristics as well as the heat and mass transfer mechanisms were considered.Reasonable numerical methods were used to solve the equations.Under various conditons,the calculated results of drying rate and moisture content versus time were obtained.The results indicate that constant drying rate period does not exist in a semi-circular impinging stream dryer.Appropriate semi-cricular stage number and curvature radius,flow-rate ratio,air velocity,and higher inlet air temperature should be used for enhancing the drying process.  相似文献   

2.
A three-dimensional model is proposed to describe the heat and mass transport process in drying of wood. The model is based on conservation of mass and energy and uses constant parameters obtained by comparing experimental data with numerical results. The model uses parameter values from literature. Experimental results obtained for temperature profiles during drying of a block of beech wood are compared with the model results. Satisfactory agreement is obtained over a range of drying air temperatures and velocities.  相似文献   

3.
The aim of this study was to investigate the applicability of hybrid neural models in modelling of drying process. A study aimed at extending a neural network mapping was also carried out. In this approach dimensionless numbers (Re, Ar, H/d) were used as inputs to predict the heat transfer coefficient in a fluidised bed drying process. To produce a data set necessary to train the networks, trials of drying different materials in a fluidised bed were carried out. On the basis of this network, a hybrid model describing the process of drying in a fluidised bed dryer was built. Results obtained were compared not only with available experimental data but also with results obtained using other types of models: a pseudo-dynamic neural model and a classical mathematical model. The analysis of results leads to a conclusion that hybrid models constitute a solid alternative method of process modelling.  相似文献   

4.
《Drying Technology》2013,31(8):1725-1738
The aim of this study was to investigate the applicability of hybrid neural models in modelling of drying process. A study aimed at extending a neural network mapping was also carried out. In this approach dimensionless numbers (Re, Ar, H/d) were used as inputs to predict the heat transfer coefficient in a fluidised bed drying process. To produce a data set necessary to train the networks, trials of drying different materials in a fluidised bed were carried out. On the basis of this network, a hybrid model describing the process of drying in a fluidised bed dryer was built. Results obtained were compared not only with available experimental data but also with results obtained using other types of models: a pseudo-dynamic neural model and a classical mathematical model. The analysis of results leads to a conclusion that hybrid models constitute a solid alternative method of process modelling.  相似文献   

5.
This work presents a complete improved mathematical model of drying in cyclone. The slip condition of the particles on the wall, the heat transfer wall-panicle and the shrinkage of the panicles during the drying process were considered. The mathematical model considers a two-dimensional turbulent gas-particle flow where the panicle phase is treated as a continuum. The momentum equations of both particle and gas phases were written in cylindrical coordinates. The discretized equations were solved by the SIMPLE algorithm. Considering the slip condition to the panicle phase and the shrinkage of the material during the drying process it was revealed a better fitness between numerical and experimental results than the previous model.  相似文献   

6.
提出了膜态沸腾传热的物理模型,建立相应的数学模型,对干涸后膜态沸腾传热特性进行分析.通过矩形通道试验数据确定关系式系数,得到了适用于矩形通道的干涸后膜态沸腾传热计算模型,并对计算偏差进行了统计计算.文中提出的理论计算模型与现有不同工况范围内取得的试验数据和已有计算模型进行了比较分析.结果表明:模型计算值与现有试验数据符...  相似文献   

7.
ABSTRACT

Mathematical models and numerical techniques for simulation of parallel flow grain drying has been proposed and tested. Concurrent flow drying has been simulated using a steady state model. In order to overcome numerical difficulties that appears in simulation of countercurrent flow drying under operational conditions that leads to thermodynamics equilibrium in any section of the dryer stage, a robust approach has been developed based on simulation of the operation starting from initial transient conditions. A lab unit for grain drying has been developed, composed of a countercurrent flow stage coupled on a concurrent flow stage. The mathematical models and numerical techniques has been tested through the comparison between calculated results and experimental data measured for com drying.  相似文献   

8.
The aim of the studies was to analyze the effect of ultrasound action on osmotic pretreatment and then on drying kinetics in continuous and intermittent drying conditions, and on the final product quality. This article presents the results of intermittent-convective drying of carrot preceded by ultrasonic assisted osmotic dehydration in fructose aqueous solutions. The theoretical drying kinetics developed from the numerical solution of mathematical model is validated using the experimental data. It has been shown that combination of ultrasonic assisted osmosis with intermittent-convective drying accelerates the drying process and improves the quality of dried biomaterial. A good adherence of the numerically determined kinetic curves confirms the usefulness of the presented model and its possible application to construction of controlled and optimized drying processes.  相似文献   

9.
Abstract

This study presents two liquid diffusion models to represent the convective drying of apple, osmotically dehydrated in sucrose solution, cut into parallelepiped-shaped pieces. Model 1 considered water diffusivity and the volume of the slices with constant values. Model 2 considered water effective diffusivity and the dimensions of the slices as variable. The numerical solution of the three-dimensional diffusion equation in Cartesian coordinates was obtained through the finite volume method, with a fully implicit formulation and boundary condition of the third kind. Process parameters were estimated by an optimizer using experimental data. A spatial distribution analysis was carried out for water effective diffusivity and moisture content in the apple slices. The results showed that the concentration of the osmotic solution used in the pretreatment influenced the drying process and that the mathematical model that considered a variable diffusivity and shrinkage was more suitable to describe the experimental data.  相似文献   

10.
ABSTRACT

This work presents a complete improved mathematical model of drying in cyclone. The slip condition of the particles on the wall, the heat transfer wall-panicle and the shrinkage of the panicles during the drying process were considered. The mathematical model considers a two-dimensional turbulent gas-particle flow where the panicle phase is treated as a continuum. The momentum equations of both particle and gas phases were written in cylindrical coordinates. The discretized equations were solved by the SIMPLE algorithm. Considering the slip condition to the panicle phase and the shrinkage of the material during the drying process it was revealed a better fitness between numerical and experimental results than the previous model.  相似文献   

11.
Earlier studies established the physical chemistry and diffusion mathematics of wheat drying. This knowledge was applied in a mathematical model of continuous drying in a well-stirred bed, and a good correlation of experimental results on spouted-bed drying was obtained. Now a model has been formulated for both well-stirred batch and continuous moving-bed dryers of the commercial types. The set of mass and energy balances and rate equations has been solved numerically by digital computation. Heating and cooling cycles are both treated. Good agreement is found with the experimental data of Stansfield and Cook on a dryer simulating the performance of commercial moving-bed dryers.  相似文献   

12.
The aim of this article is to present a self-consistent mathematical model describing the heat and mass transfer phenomena during the convective drying both in the constant and in the falling drying rate periods. This general model is developed on the basis of the theory of mixtures and the thermodynamics of irreversible processes. The boundary conditions are formulated and the numerical algorithm enabling calculation of the temperature and the drying curves in the two mentioned periods of drying is constructed. In this paper much effort is devoted to the experimental validation of the model. The convective drying of a cylindrical sample made of kaolin was examined both experimentally and numerically for comparison and the distribution of temperature and the drying curves were determined. A very good agreement of the experimental and theoretical results is stated.  相似文献   

13.
食品冷冻干燥过程的模型及影响因素   总被引:5,自引:0,他引:5       下载免费PDF全文
涂伟萍  程江 《化工学报》1997,48(2):186-192
在合理简化的基础上,得到了只需较少参数的冷冻干燥过程一维数学模型。通过对胡萝卜和土豆食品的冷冻干燥实验,研究了加热方式、加热搁板温度和干燥室真空度对干燥时间的影响,模型的数值解与实验值吻合良好。  相似文献   

14.
15.
A computerized mathematical model was developed to predict fractional drying and aerodynamic separation of alfalfa into leaves and stems in one process in a rotary dryer. Aerodynamic separation was characterized by separation efficiency or the total amount of the desired component (leaf or stem) recovered, relative to the amount entering the process, and by purity of leaf or stem component collected at exit ports of the dryer. The model development assumed 100% separation efficiency and purity. The model was validated by comparing model predicted results with measured experimental and field test data obtained from a small industrial rotary dryer and a full-scale industrial dryer. Changes in leaf, stem, and drying gas moisture contents and temperatures were measured and predicted by the model under various drying conditions. The model-predicted results agreed well with measured data. The model was also used to simulate the performance of industrial rotary dryers under various operating conditions. The model can be used to determine the optimum drying and aerodynamic separation parameters. It can also be used to design and redesign new and existing industrial rotary dryers in order to combine drying and aerodynamic separation into one process.  相似文献   

16.
The wall deposition phenomenon in a pilot-scale spray dryer was investigated based on mathematical modeling and experimental trials. For this purpose, the governing equations were obtained and solved numerically by applying a mathematical modeling technique and an open-source computational fluid dynamics (CFD) software. The wall deposition, velocity distribution of the existing phases, and droplet trajectory in the drying chamber were determined. The effect of the operating parameters including the feed flow rate, inlet concentration of dissolved solid, and initial droplet diameter on the air flow pattern, droplet trajectory, and wall deposition was investigated. Through the experiments, the wall deposition of powder product in different positions of the drying chamber was measured. In modeling part of this study, we attempted to determine the effect of particle diameter on the percentage of wall deposition and the position where it occurred.

The model results obtained for wall deposition were compared with collected experimental data and good agreement was observed.  相似文献   

17.
MODELING VACUUM-CONTACT DRYING OF WOOD: THE WATER POTENTIAL APPROACH   总被引:1,自引:0,他引:1  
A two-dimensional mathematical model for vacuum-contact drying of wood is presented. The moisture and heat equations are based on the water potential concept whereas the pressure equation is formulated considering unsteady state conservation equation of dry air. Most of the model parameters were determined during independent experiments. The set of equations is then solved in a coupled form using the finite element method. The validation of the model is performed using experimental results obtained during vacuum-contact drying of sugar maple sapwood. The experimental and calculated data are in good agreement. Nevertheless, some discrepancies are observed which can be attributed to the boundary conditions used and to the fact that heat transfer by convection was neglected.  相似文献   

18.
In previous work on pneumatic drying presented by the authors, a mathematical model based on the conservation equations of momentum, mass and energy was proposed. This model was developed taking into account axial and radial profiles for gas and solids velocities, pressure and porosity in the drying tube. These dynamic profiles influenced the behavior of temperature in the gas and particulate phases, gas humidity and solids moisture content. In this work, this model has been used to perform a parametric analysis of the tube and panicle diameters in the pneumatic drying process. These variables were analyzed here for fixed conditions of gas and solids flowrates and initial values of temperatures, humidity and moisture content. Factorial planning was applied to the numerical solution of the mathematical model. Experimental data obtained in a pilot scale pneumatic dryer were used as the initial conditions in the simulation to specify the levels of the variables analyzed. Results on the influence of tube diameter and particle diameter on the drying process were obtained by statistical analysis of the responses generated by the factorial planning.  相似文献   

19.
A computerized mathematical model was developed to predict fractional drying and aerodynamic separation of alfalfa into leaves and stems in one process in a rotary dryer. Aerodynamic separation was characterized by separation efficiency or the total amount of the desired component (leaf or stem) recovered, relative to the amount entering the process, and by purity of leaf or stem component collected at exit ports of the dryer. The model development assumed 100% separation efficiency and purity. The model was validated by comparing model predicted results with measured experimental and field test data obtained from a small industrial rotary dryer and a full-scale industrial dryer. Changes in leaf, stem, and drying gas moisture contents and temperatures were measured and predicted by the model under various drying conditions. The model-predicted results agreed well with measured data. The model was also used to simulate the performance of industrial rotary dryers under various operating conditions. The model can be used to determine the optimum drying and aerodynamic separation parameters. It can also be used to design and redesign new and existing industrial rotary dryers in order to combine drying and aerodynamic separation into one process.  相似文献   

20.
唐惠庆  郭占成  于宪溥  金鑫 《化工学报》2001,52(10):928-932
引 言折流式移动床反应器是郭占成等[1] 提出的一种新型反应器 ,作为一种新型干燥方式 ,还没有在实际中得到应用 .针对折流式移动床内冷态气相和固相的流动特性实验和计算机数值模拟已经完成[2 ,3] ,实验结果表明其压力损失显著低于同操作条件下的固定床 ,物料流动仅依靠物料自身重力和气流作用力 ,可以节省额外的动力和降低气固比 .采用多层床又可以提高热效率 ,强化了气固之间的传质、传热和增加了物料的停留时间 .针对单层或多层床的干燥过程进行数学模拟的研究已有很多[4~ 7] ,但其研究结果都无法适合折流式移动床干燥特性分析 .本文…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号