首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(9):1383-1389
The facilitated transport of Cu(II) ions from different aqueous nitrate source phases (c Me = 0.001 M, pH = 6.0) across supported (SLMs) and polymer inclusion membranes (PIMs) doped with 1-hexyl-2-methylimidazole as ion carrier was reported. The membrane is characterized by means of atomic force microscopy (AFM). The results show that Cu2+ can be separated very effectively from other transition metal cations as Zn2+, Co2+, and Ni2+ from different equimolar mixtures of these ions. The highest initial fluxes of Cu(II) were found for PIM, while lower values were observed for SLM. However, after taking into account the morphology of the membranes (porosity, tortuosity), the values of the initial flux of Cu(II) transport across PIM is less than that across SLM. The recovery factor of Cu2+ ions during transport across PIM from different mixtures of cations is above 91% after 24 hrs and above 76% during transport across SLM. Also, the stability of PIM and SLM doped with 1-hexyl-2-methylimidazole was confirmed in replicate experiments.  相似文献   

2.
《分离科学与技术》2012,47(10):1335-1346
Abstract

Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2′-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthro-line (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu+,2+, Zn2+, Cd2+ ? Pb2+, Co2+. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu+ ion was higher than those of Cd2+ and Zn2+ ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu2+ ion decreased whereas that of the Cd2+ ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species.  相似文献   

3.
A new supported liquid membrane (SLM) system was prepared for the selective transport of bismuth ions from the aqueous feed into the aqueous permeate phase. The support of the SLM was a thin porous polypropylene or polyvinylidene fluoride membrane impregnated with diisooctyldithiophosphinic acid (Cyanex 301) as mobile carrier in 4‐chloroacetophenon as organic solvent. Cyanex 301 acts as a highly selective carrier for the uphill transport of bismuth ions through the SLM. In the presence of HNO3 as a metal ion acceptor in the strip solution, the transport of bismuth ions into the strip side reached 70 % of the initial feed concentration after 3.5 hours. The selectivity and efficiency of bismuth transport from aqueous solutions containing different mixtures of cations were investigated. In the presence of P2O72– ions as suitable masking agent in the feed solution, the interfering effects of other cations were completely eliminated. The selective transport of bismuth through SLM is superior to liquid‐liquid extraction or through bulk liquid membranes. This is due to the high efficiency. The SLM reduces the solvent requirements, combines extraction and stripping operations in a single process and allows the use of highly selective extractants. The system may be applied to samples containing very low bismuth concentrations.  相似文献   

4.
《分离科学与技术》2012,47(20):2733-2762
Abstract

This paper presents a state of art review on the stability of supported liquid membranes (SLM). The backgrounds of SLM instability phenomena are presented, and various mechanisms for explaining these phenomena are treated in detail. Several suggestions for stability improvement are discussed.

  相似文献   

5.
The interface behaviour in the facilitated co-transport of Ag(I), Cu(II) and Zn(II) ions through supported liquid membranes (SLMs) made of a flat-sheet polypropylene membrane support containing cryptands (2.2.2 or 2.2.1) as carriers was studied. The liquid-liquid extraction tests showed a maximum distribution coefficient when the carrier concentration was greaterthan 10−4M. In transport experiments the transmembrane flux increased with increasing carrier concentration reaching a limiting value at greater than 10−3M concentration. The calculation ofthe diffusion coefficients in membranes showed ahigherdiffusivityof2.2.2-metal complexes with respect to 2.2.1-metal complexes for silver ions. A sequence of diffusivity D(Ag+)>D(Cu2+)>D(Zn2+) was obtained, but carrier 2.2.1 showed a higher selectivity through copper ions. A sequence of diffusivity D(Cu2+)>D(Zn2+)>D(Ag+) was obtained. The diffusivity was significantly higher when using Celgard 2500 support compared to Celgard 2400 or 2402. Variable metal ion concentrations in the feed phase fluxes almost zero, at less than 10−2 M concentration, were obtained. In the transient state of the transport through the SLM, different molar flow rates at the feed-membrane and membrane-strip interfaces were observed. The selectivity of the interfaces containing 2.2.2 in the separation binary mixtures of ions showed the following separation factors: SFAgZn = 2.50, SFAgCu = 1.64, SFcuZn = 1.42.  相似文献   

6.
The transport and separation of Zn2+ and Cd2+ from binary sulfate solutions in a supported liquid membrane using di(2‐ethylhexyl)phosphoric acid (D2EHPA) and 2‐ethylhexylphosphonic acid mono‐2‐ethylhexyl ester (PC88A) as mobile carriers was studied. Batch solvent extraction experiments were conducted to obtain the reaction stoichiometries. Experiments were performed at different metal concentrations (1.4–14.5 mol m?3), metal concentration ratios (0.4–9.2), pH (2–5), and carrier concentrations (0.1–0.6 mol dm?3). A mass transfer model was proposed that considers diffusion in the aqueous feed and strip stagnant layers, and within the membrane. The interfacial reactions were assumed to approach equilibrium instantaneously. It was shown that the proposed model was applicable for binary Zn2+/Cd2+ systems (standard deviation, 5%). The larger separation factors of Zn2+ over Cd2+ with PC88A than D2EHPA under equilibrium (batch solvent extraction) and non‐equilibrium (liquid membrane) conditions were also evaluated and discussed. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
《分离科学与技术》2012,47(11):2365-2372
Abstract

The transport behavior of Hg2+ from aqueous solution through a flat‐sheet‐supported liquid membrane (SLM) has been investigated by using of calix[4]arene derivatives (1 and 2) as carriers and Celgrad 2400 and 2500 as the solid support. The effect of solvent type and anions such as chloride and nitrate ions on the transport of Hg2+ was examined. Danesi mass transfer model was used to calculate the permeability coefficients for each parameter studied. The highest values of permeability were obtained with 2‐nitrophenyl ethyl ether (NPOE) solvent and the influence was found to be in the order, NPOE>chloroform>xylene. The transport efficiency on the supported liquid membrane was dependent on the type of carrier, its characteristics, and the type of the solvent.  相似文献   

8.
《分离科学与技术》2012,47(8):1629-1640
Abstract

A selective transport system for alkali and alkaline earth metallic ions with a perchlorate ion as a pairing ion species through a supported liquid membrane (SLM) containing tripentyl phosphate (TPP) as a carrier is described. The SLM used is a porous polypropylene membrane impregnated with TPP solution in o-nitrophenyloctylether. The effects of the pairing ion species, the initial perchlorate concentration, and the TPP concentration on metallic ion transportability are examined under various experimental conditions. The permeation velocities of the metallic ions in the transport system followed the sequence Li+?Na+>K+>Mg2+; that is, a highly selective transport for Li+ ion was observed. Compared with the transport rates of alkali metallic ions, those of transition metallic ions such as Cu2+ and Fe3+ ions are very low. The permeation velocities of alkali and alkaline earth metallic ions through an SLM are dependent on the concentrations of perchlorate and TPP. Equations for the permeation velocities of Li+, Na+, K+, and Mg2+ ions through an SLM, based on two concentrations of perchlorate and TPP, are proposed.  相似文献   

9.
《分离科学与技术》2012,47(12-13):1735-1751
Abstract

The technique of contained liquid membranes (CLM) for liquid solution separation is discussed. The CLM is obtained by confining the membrane liquid between two sets of microporous hollow fibers (MHF). The lumen of the hollow fiber carries the feed or the strip solution under proper phase pressure condition vis-a-vis the membrane phase. Various possible structural configurations of the CLM are illustrated with respect to the nature of microporous hollow fiber substrate, the feed solution and the liquid membrane. The contributions of different resistances to the solute transport rate are identified. Some basic experimental data obtained in small CLM permeators are presented for two systems with organic liquid membranes to illustrate how steady state separation is achieved after an initial unsteady period. The considerable advantages of the CLM structure over more traditional liquid membrane techniques such as supported liquid membrane (SLM) with respect to membrane stability, membrane regeneration and feed equilibration are pointed out.  相似文献   

10.
《分离科学与技术》2012,47(8):1689-1701
Abstract

The selective extractions of Zn2+ and Cu2+ from their mixed solutions of sulfate medium have been studied using hollow fiber supported liquid membranes (HFSLM). The HFSLM contained two kinds of extractants; one contained 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester [HEH(EHP)], the commercial name of which is PC88A, for Zn extraction; the other contained the hydroxy oxime reagent LIX84 for Cu extraction. Individual runs of each HFSLM were made to determine the effect of operational variables on the permeation rates of metal ions and their separation factors. In addition, the simultaneous and selective extractions of both Zn2+ and Cu2+ from their mixed solutions were demonstrated using the PC88A and LIX84 HFSLMs together. The performance of simultaneous extraction was compared with those of the individual runs.  相似文献   

11.
ABSTRACT

The transport of Ga(III) from chloride solution by supported liquid membrane (SLM) using organophosphorus acids as carriers was studied and compared with solvent extraction results. The diffusion coefficient, permeability coefficient and mass transfer resistance for both processes were analyzed by investigating various parameters, such as flow pattern, flow rate, pH, Ga(III)/extractant concentration and temperature. Under optimized conditions, the extraction percentage of 97.0% and permeability coefficient of 9.22 × 10?6 m/s was achieved for SLM process. Kinetic modeling was proposed to determine the mass diffusion coefficient of Ga(III) complex across the membrane and stability of this SLM system was also examined.  相似文献   

12.
《分离科学与技术》2012,47(11-12):857-894
Abstract

The works performed in the Separation Chemistry Group of the Chemistry Division of Argonne National Laboratory on the transport and separation properties of supported liquid membranes (SLM) are reviewed. The models and equations which describe the permeation through SLMs of metal species are described. These models have been tested with various carriers absorbed on flat-sheet and hollow-fiber SLMs by measuring the permeation of several metal species of hydrometallurgical and nuclear interest. An equation for the separation factor of metal species in SLM processes and examples of separations of metal ions are reported. The possibility of bypassing the single stage character of SLM separations by using multilayer composite SLMs, arranged in series, is also analyzed. Finally, the factors which control the stability of SLMs are briefly discussed.  相似文献   

13.
The effect of adding a water-soluble chelating agent, diethylenetriaminepentaacetic acid (DTPA), to the feed phase was studied on the selective permeation of rare earth metal ions (Ln3+) through a supported liquid membrane (SLM) containing 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (PC-88A). High selectivity of Pr to Nd was observed at a pH of 2.0 in the stripping phase, and selective permeation of La was observed at higher pH values. The permeation mechanism of the Ln3+ was analyzed, and the above results were explained by the change in the concentrations of free Ln3+ in the feed phase and Ln3+/PC-88A complexes in the SLM with pH.  相似文献   

14.
《分离科学与技术》2012,47(13-15):1571-1586
Abstract

The separation of uranium from Hanford site groundwater was studied by hollow-fiber supported liquid membranes, SLM. The carrier bis(2,4,4-trimethylpentyl)phosphinic acid, H[DTMPeP], contained in the commercial extractant CyanexTM 272 was used as membrane carrier, because of its selectivity for U over calcium and magnesium. The water soluble complexing agent, 1-hydroxyethane-1,1-diphosphonic acid, HEDPA, was used as stripping agent. Polyproylene hollow-fibers and n-dodecane were used as polymeric support and diluent, respectively. Laboratory scale hollow-fiber modules were employed in a recycling mode, using as feed synthetic groundwater at pH 2, to confirm the capability of the proposed SLM system to separate and concentrate U(VI) in the strip solution. Information was obtained on the U(VI) concentration factor and on the long-term performance of the SLMs. Encouraging results were obtained both with a conventional module and with a module containing a carrier solution reservoir. Industrial scale modules were used at Hanford to test the SLM separation of U(VI) from real contaminated groundwater. The uranium concentration was reduced from approximately 3,500 ppb to about 1 ppb in a few hours.  相似文献   

15.
BACKGROUND: Supported liquid membranes (SLM) are an alternative technique to remove and recover metals from diluted process solutions and waste‐water. In the present work, the removal of Co(II) from a synthetic CoSO4 solution containing initial amounts of cobalt(II) in the range 100–200 ppm (0.1–0.2 g dm?3) has been studied on a pilot scale. By performing batch equilibrium experiments, the optimal settings, i.e. the composition of the organic phase, the pH of the feed, the type and concentration of the stripping agent were determined. RESULTS: It is shown that the equilibrium characteristics of a synergistic extractant mixture containing di‐2‐ethyl‐hexylphosphoric acid (D2EHPA) and 5‐dodecylsalicylaldoxime (LIX 860‐I) are superior to D2EHPA. Both hydrochloric acid and sulfuric acid have been evaluated as stripping solutions in liquid–liquid extraction tests and as the receiving phase in a SLM configuration. Although equilibrium tests showed no difference in stripping characteristics between both chemicals, it was observed that in a SLM configuration the stability of the system when hydrochloric acid is used is poor. With a commercially available SLM module (Liqui‐Cel Extra‐Flow 4 × 28) having a surface area of 19 m2, a steady Co(II) flux of 0.140 gm?2h?1 has been obtained at influent concentrations of cobalt between 100 and 200 ppm with 3 mol dm?3 sulfuric acid as stripping phase. CONCLUSIONS: The results obtained show that a supported liquid membrane containing a synergistic mixture of LIX 860‐I and D2EHPA gives the possibility of recovering cobalt from dilute solutions. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
《分离科学与技术》2012,47(16):3553-3568
Abstract

The pharmacological properties of propranolol enantiomers are quite different, the β‐adrenergic blocking activity resides in the (S)‐(?) isomer, while the (R)‐(+)‐enantiomer has only a membrane stabilizing effect. The inherent chirality of cyclodextrins (CDs) allows them to form diastereomeric complexes. In this work, a peracetylated β‐CD (TA‐β‐CD) that preferentially interacts with the (S)‐(?) isomer of propranolol was used. Two liquid membranes, bulk liquid membrane (BLM) and supported liquid membrane (SLM) were tested. A recovery of 30% and a enantiomeric excess of 12% were obtained, using a SLM with 10 mM of propranolol and a pH gradient between feed and stripping phases.  相似文献   

17.
A hybrid membrane system composed of two insoluble cation‐exchange membranes (Nafion) and a liquid membrane in between was studied. A series of organic and aqueous liquid membranes containing soluble polymers as macromolecular ionophores (macroionophores) was prepared and tested. The pertraction (membrane‐transport) characteristics of poly(ethylene glycol) and its ionizable derivatives, including as poly[poly(oxyethylene) phosphate] (PPOEP) and di‐[ω‐methoxy poly(oxyethylene)] phosphate, were measured and are discussed as dependent on the composition and molecular mass of a macroionophore. The liquid membrane composed of PPOEPs dissolved in dichloroethane combined the cation‐exchange properties with neutral coordination functionalities introduced by the poly(oxyethylene) backbone of this ionophore. The overall fluxes, facilitation factors, and the membrane system selectivity were measured in the carrier‐mediated pertraction of transient metal cations (Cu2+, Zn2+, Mn2+, Co2+, and Ni2+). PPOEP could facilitate the pertraction of Zn2+ and Cu2+ over Ni2+ and Co2+. In the case of an aquatic hybrid membrane system, high but nonselective ionic fluxes were observed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 99–109, 2002; DOI 10.1002/app.10263  相似文献   

18.
We have demonstrated, for the first time, P84 co-polyimide with novel chemical cross-linking modification can be effectively used as the polymeric microporous matrix for supported liquid membrane (SLM) applications. Both asymmetric and symmetric flat membranes with high tortuosity were fabricated via the phase inversion method. It is found that the symmetric membrane outperforms the asymmetric one because the former may provide (1) balanced forces exerted at two aqueous/membrane interfaces and (2) the formation of more stable stagnant layers than the latter. However, the performance of both unmodified asymmetric and symmetric flat membranes deteriorates severely after use for 20-30 h. A novel chemical modification agent, p-xylenediamine/water, was discovered and shows effectiveness to improve P84 membrane stability for SLM. The improved SLM stability is attributed to the reduced pore size and the enhanced hydrophobicity on the membrane surfaces. The newly developed chemically modified SLM has a similar lifetime compared with other SLM systems using commercial PTFE as the support matrix.  相似文献   

19.
Transport of Pb2+ was carried from acidic solution into alkaline stripping phase through tri‐n‐octylamine‐xylene‐polypropylene supported liquid membrane. The transport of Pb2+ through the membrane was studied by varying the concentration of Pb2+ and HNO3 in feed solution, NaOH concentration in strip solution and TOA concentration in membrane phase. The flux data obtained has been used to study the stoichiometry of complex Pb(NO3)n+2(HNR3)n. The supported liquid membrane (SLM) has been found stable for 10 runs with 24 h between each run. This SLM has been used effectively to extract lead ions along with chromium, copper and zinc ions from aqueous acidic leached solution of paint and industrial effluents. © 2012 Canadian Society for Chemical Engineering  相似文献   

20.
Cu2+在支撑液膜中的传质过程   总被引:1,自引:0,他引:1  
研究了以疏水性多孔聚丙烯膜(Celgard 2500)为支撑体和LIX984的煤油溶液为膜液的支撑液膜体系萃取Cu2+的传质过程. 采用双膜理论描述Cu2+通过平板支撑液膜的传质过程,建立了其在稳态下的传质动力学方程,且当反萃取侧酸浓度大于2 mol/L时,反萃取侧的传质阻力可以忽略;利用膜内分传质系数km表征支撑液膜膜液的流失行为,在传质过程中,km先增大而后逐渐减小,且载体的流失速率大于稀释剂煤油的流失速率. 考察了操作条件对传质和膜液流失速率的影响,结果表明,Cu2+初始传质通量随载体初始浓度、料液初始pH值和料液初始Cu2+浓度的增大而增大;载体初始浓度越大,膜液流失越快;料液初始Cu2+浓度增大,膜液流失越慢;料液相pH值的改变对膜液流失速率没有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号