共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前语音谎言检测识别效果差、特征提取不充分等问题,提出了一种基于注意力机制的欺骗语音识别网络。首先,将双向长短时记忆与帧级声学特征相结合,其中帧级声学特征的维数随语音长度的变化而变化,从而有效提取声学特征。其次,采用基于时间注意增强卷积双向长短时记忆模型作为分类算法,使分类器能够从输入中学习与任务相关的深层信息,提高识别性能。最后,采用跳跃连接机制将时间注意增强卷积双向长短时记忆模型的底层输出直接连接到全连接层,从而充分利用了学习到的特征,避免了消失梯度的问题。实验阶段,与LSTM以及其他基准模型进行对比,所提模型性能最优。仿真结果进一步验证了所提模型对语音谎言检测领域发展及提升识别率提供了一定借鉴作用。 相似文献
2.
针对基于视觉的动态手势识别易受光照、背景和手势形状变化影响等问题,在分析人体手势空间上下文特征的基础上,首先建立一种基于人体骨架和部件轮廓特征的动态手势模型,并采用卷积姿势机和单发多框检测器技术构造深度神经网络进行人体手势骨架和部件轮廓特征提取。其次,引入长短时记忆网络提取动态人体手势中骨架、左右手和头部轮廓的时序特征,进而分类识别手势。在此基础上,设计了一种空间上下文与时序特征融合的动态手势识别机(GRSCTFF),并通过交警指挥手势视频样本库对其进行网络训练和实验分析。实验证明,该系统 可以快速准确识别动态交警指挥手势,准确率达到94.12%,并对光线、背景和手势形状变化具有较强的抗干扰能力。 相似文献
3.
4.
桥梁裂缝检测对于桥梁健康检测具有重要的意义.基于布里渊时域分析的分布式光纤传感器能够测量整个结构表面的应变数据.由于测量所得应变数据信噪比低,存在裂缝损伤处的应变异常被噪声\"淹没\"和\"混淆\"的问题.针对这一问题,提出一种基于一维堆叠卷积自编码器的分类检测方法.该方法具有噪声鲁棒性强、自提取特征可判别性高等优势.首先,通过布置光纤传感器获取结构表面应变数据,对光纤应变数据进行标准化预处理,并划分应变子序列.然后,使用一维堆叠卷积自编码器自动提取应变子序列的特征.最后,通过Softmax分类器对所提取的应变子序列特征进行分类,即裂缝或非裂缝.实验结果表明,该方法可以有效检测微小裂缝,检测准确率高.并且该方法提取的特征可判别性优于卷积神经网络和堆叠自编码器等方法. 相似文献
5.
针对油井示功图特征提取效果不佳导致工况诊断准确率不高的问题, 提出一种基于多分支融合嵌入式注意力特征提取的油井工况诊断方法. 首先, 为使提取的示功图隐含特征信息更加全面, 在卷积自编码器的基础上, 设计多分支、多尺度的编码器结构提取, 并融合示功图位移-载荷数据的特征信息; 其次, 为强化多分支融合后的局部特征, 设计一种嵌入式通道注意力机制, 在全局平均池化基础上, 添加全局最大池化, 使其能够同时关注示功图全局和局部特征; 同时, 为进一步增强示功图关键信息的隐含特征提取能力, 在通道挤压后, 激励之前嵌入通道注意力机制模块对挤压后的通道预先进行一次权重调整, 激励后进行权重的二次调整; 最后, 将提取的特征放入长短期记忆网络模型中进行油井工况诊断. 结果表明, 基于多分支融合嵌入式注意力特征提取的油井工况诊断方法在一定程度上改善了示功图有效特征提取能力, 提高了油井工况诊断率, 能够满足油田现场的实际需求. 相似文献
6.
为准确预测多个站点城轨交通短时客流,提出卷积长短时记忆网络(ConvLSTM)与栈式自编码器(SAE)相结合的深度学习模型SAE-ConvLSTM。考虑了13个影响客流量的外部因素,并通过SAE对其进行逐层提取,获得更具代表性的外部特征。通过ConvLSTM充分提取客流量的时间与空间特征,并融合所获得的外部特征对轨道交通网络中多个站点的短时客流量进行同步预测。同时设计了隐动作蒙特卡洛树搜索方法(LA-MCT),对SAE进行参数寻优。为了验证寻优效果,与遗传算法、粒子群算法,模拟退火算法,以及禁忌搜索算法进行对比。结果表明,LA-MCTS在寻优时间和寻优效果方面均具有优势。此外,以深圳地铁为例进行大量的数值实验,结果显示在预测均方根误差、绝对误差均值、平均绝对百分比误差以及拟合优度方面,所构建的SAE-ConvLSTM模型预测结果均优于浅层机器学习模型—反向传播神经网络、支持向量回归模型、整合移动平均自回归模型,及深度学习模型—长短时记忆网络、卷积神经网络、以及不加入外部特征的ConvLSTM、加外部特征无SAE的ConvLSTM、长短时记忆网络+卷积神经网络(CNN+LSTM)和加外部特征的CNN+LSTM。 相似文献
7.
群体情绪识别是人机交互领域的前言课题,针对群体情绪识别准确率的问题,结合卷积神经网络(CNN)与长短期记忆网络(LSTM),提出一种多流CNN-LSTM网络模型学习群体情绪的静态和动态特征。以视频序列的原始图像、视觉显著图形和叠加的光流图像分别作为三个通道的输入,利用CNN网络对空间特征和局部运动特征进行分析,得到的特征图直接输入LSTM网络,进行全局运动特征的学习。最后连接Softmax分类器,对三个通道的Softmax输出进行加权融合,得到分类结果。实验结果表明,本文模型可有效地识别4种典型的群体情绪,且识别率高于已有算法,准确度(ACC)和宏平均精度(MAP)分别最高可达82.6%、84.1%。 相似文献
8.
为了更精确、全面地表征各时期肺部医学影像中病灶特征的变化与发展规律,研究在时间纵向维度上预测肺结节的演变方式,构建了一种多模态特征融合下不同时期肺部病灶良恶性预测模型。根据病人不同时期的序列CT图像,提取肺部病灶的传统特征与深度特征,构造多模态特征;通过神经网络对多模态特征进行相关性快速融合;利用长短时记忆方法学习不同时期具有时间特征的肺部病灶特征向量,构建一个双向长短时记忆网络对病灶进行良恶性预测。实验表明,所提方法准确率为92.8%,比传统方法有所提高,可以实现有效预测。 相似文献
9.
传统文本分类使用word embedding作为文档表示,忽略词在当前上下文的含义,潜在的认为相同词在不同文本中含义相同。针对此问题提出一种词义消歧的卷积神经网络文本分类模型——WSDCNN(Word Sense Disambiguation Convolutional Neural Network)。使用双向长短时记忆网络(BLSTM) 建模上下文,得到词义消歧后的文档特征图。利用卷积神经网络(CNN)进一步提取对文本分类最重要的特征。在四个数据集上进行对比实验,结果表明,所提出方法在两个数据集,特别是文档级数据集上优于先前最好的方法,在另外两个数据集上得到与此前最好方法相当的结果。 相似文献
10.
本文针对现有滚动轴承智能故障诊断方法在面向大噪声背景下鲁棒性能差的问题. 基于混沌理论, 提出采用相空间重构方法还原并丰富轴承振动的动力学特性, 通过卷积神经网络(CNN)提取混沌序列中的高级抽象特征,又考虑故障信号具有长程相关性, 将低维抽象故障特征引入长短期记忆网络(LSTM), 以灰狼算法优化的支持向量机(OSVM)作为分类器, 提出CCNN (Chaotic CNN)–LSTM–OSVM智能故障诊断方法. 试验结果表明, 在处理信噪比为??6 dB信号时, 该方法仍具有89.96%的准确率, 相比以Softmax作为分类器的CNN–LSTM和CCNN–LSTM方法分别高出15.36%和5.21%, 且在收敛速度方面亦有较大优势. 相似文献
11.
本文针对现有滚动轴承智能故障诊断方法在面向大噪声背景下鲁棒性能差的问题.基于混沌理论,提出采用相空间重构方法还原并丰富轴承振动的动力学特性,通过卷积神经网络(CNN)提取混沌序列中的高级抽象特征,又考虑故障信号具有长程相关性,将低维抽象故障特征引入长短期记忆网络(LSTM),以灰狼算法优化的支持向量机(OSVM)作为分类器,提出CCNN (Chaotic CNN)–LSTM–OSVM智能故障诊断方法.试验结果表明,在处理信噪比为-6 dB信号时,该方法仍具有89.96%的准确率,相比以Softmax作为分类器的CNN–LSTM和CCNN–LSTM方法分别高出15.36%和5.21%,且在收敛速度方面亦有较大优势. 相似文献
12.
13.
Muhammad Umer Imran Ashraf Arif Mehmood Saru Kumari Saleem Ullah Gyu Sang Choi 《Computational Intelligence》2021,37(1):409-434
Sentiment analysis focuses on identifying and classifying the sentiments expressed in text messages and reviews. Social networks like Twitter, Facebook, and Instagram generate heaps of data filled with sentiments, and the analysis of such data is very fruitful when trying to improve the quality of both products and services alike. Classic machine learning techniques have a limited capability to efficiently analyze such large amounts of data and produce precise results; they are thus supported by deep learning models to achieve higher accuracy. This study proposes a combination of convolutional neural network and long short‐term memory (CNN‐LSTM) deep network for performing sentiment analysis on Twitter datasets. The performance of the proposed model is analyzed with machine learning classifiers, including the support vector classifier, random forest (RF), stochastic gradient descent (SGD), logistic regression, a voting classifier (VC) of RF and SGD, and state‐of‐the‐art classifier models. Furthermore, two feature extraction methods (term frequency‐inverse document frequency and word2vec) are also investigated to determine their impact on prediction accuracy. Three datasets (US airline sentiments, women's e‐commerce clothing reviews, and hate speech) are utilized to evaluate the performance of the proposed model. Experiment results demonstrate that the CNN‐LSTM achieves higher accuracy than those of other classifiers. 相似文献
14.
With the wide usage of e-banking in recent years, and by increased opportunities for fraudsters subsequently, we are witnessing a loss of billions of Euros worldwide due to credit card fraud every year. Therefore, credit card fraud detection has become a critical necessity for financial institutions. Several studies have used machine learning techniques for proposing a method to address the problem. However, most of them did not take into account the sequential nature of transactional data. In this paper, we proposed a novel credit card fraud detection model using sequence labelling based on both deep neural networks and probabilistic graphical models (PGM). Then by using two real-world datasets, we compared our model with the baseline model and examined how considering hidden sequential dependencies among transactions and also among predicted labels can improve the results. Moreover, we introduce a novel undersampling algorithm, which helps to maintain the sequential patterns of data during the random undersampling process. Our experiments demonstrate that this algorithm achieves promising results compared to the state-of-the-art methods in oversampling and undersampling. 相似文献
15.
为实现非结构化工艺规程文本中关键信息的高效识别,建立一种基于机加工领域词典和神经网络的命名实体识别模型.首先,结合机加工领域词典与jieba分词技术进行数据集的自动标注,并在对工艺参数信息进行标注的过程中将数字和标志字母划分为一个分词单位以增强后续特征提取效果;其次,在word2vec词嵌入的基础上,采用双向长短时记忆网络对文本进行特征提取;最后,采用条件随机场综合上下文逻辑以提高关键工艺信息的识别准确率.在包含431条工步内容的数据集上,对所提模型的识别效果进行实验,结果表明,所提模型的准确率、召回率和F1值分别为90.20%,93.88%和92.00%,在与领域内传统模型的对比上具有一定优势,并使用3个不同工艺规程数据集验证了该模型的鲁棒性. 相似文献
16.
工业生产中常根据林格曼烟气黑度判断工业烟尘的污染等级,一种有效的方式是应用计算机视觉系统对工业烟尘进行监测,其中对烟尘目标进行准确分割是该系统的关键技术。因为工业烟尘具有形状不固定、和云相似度高等特点,现有算法在复杂场景下对烟尘进行分割时容易受到干扰,分割准确度有待提高。针对这一问题,提出一种基于FCN-LSTM的工业烟尘图像分割方法,在全卷积网络对图像空间特征提取的基础上,使用长短时记忆网络提取图像序列的时间信息,通过烟尘的动态特征对运动的烟尘和背景进行区分,增强复杂场景下的抗干扰能力。实验表明,本文模型相比于全卷积网络,在复杂场景下的抗干扰能力有显著提升,能够有效克服来自云的干扰,对全卷积网络分割结果中易出现干扰点的问题也有改善,IoU指标最高有8.04%的提升。 相似文献
17.
V Rathinapriya;J. Kalaivani; 《Expert Systems》2024,41(11):e13665
The people in the world rely on social media for gathering news, and it is mainly because of the development of technology. The approaches employed in natural language processing are still deficient in judgement factors, and these techniques frequently rely upon political or social circumstances. Numerous low-level communities in the area are curious after experiencing the negative effects caused by the spread of false information in different sectors. Low-resource languages are still distracted, because these techniques are extensively employed in the English language. This work aims to provide an analysis of regional language fake news and develop a referral system with advanced techniques to identify fake news in Hindi and Tamil. This proposed model includes (a) Regional Language Text Collection; (b) Text preprocessing; (c) Feature Extraction; (d) Weighted Stacked Feature Fusion; and (e) Fake News Detection. The text data is collected from the standard datasets. The collected text data is preprocessed and given into the feature extraction, which is done by using bidirectional encoder representations from transformers (BERT), transformer networks, and seq2seq network for extracting the three sets of language text features. These extracted feature sets are inserted into the weighted stacked feature fusion model, where the three sets of extracted features are integrated with the optimized weights that are acquired through the enhanced osprey optimization algorithm (EOOA). Finally, these resultant features are given to multi-scale atrous convolution-based one-dimensional convolutional neural network with dilated long short-term memory (MACNN-DLSTM) for detecting the fake news. Throughout the result analysis, the experimentation is conducted based on the standard Tamil and Hindi datasets. Moreover, the developed model shows 92% for Hindi datasets and 96% for Tamil datasets which shows effective performance regarding accuracy measures. The experimental analysis is carried out by comparing with the conventional algorithms and detection techniques to showcase the efficiency of the developed regional language-based fake news detection model. 相似文献
18.
近年来,视频换脸技术发展迅速。该技术可被用于伪造视频来影响政治行动和获得不当利益,从而给社会带来严重危害,目前已经引起了各国政府和舆论的广泛关注。本文通过分析现有的主流视频换脸生成技术和检测技术,指出当前主流的生成方法在时域和空域中均具有伪造痕迹和生成损失。而当前基于神经网络检测合成人脸视频的算法大部分方法只考虑了空域的单幅图像特征,并且在实际检测中有明显的过拟合问题。针对目前检测方法的不足,本文提出一种高效的基于时空域结合的检测算法。该方法同时对视频换脸生成结果在空域与时域中的伪造痕迹进行捕捉,其中,针对单帧的空域特征设计了全卷积网络模块,该模块采用3D卷积结构,能够精确地提取视频帧阵列中每帧的伪造痕迹;针对帧阵列的时域特征设计了卷积长短时记忆网络模块,该模块能够检测伪造视频帧之间的时序伪造痕迹;最后,根据特征分类设计特征网络金字塔网络结构,该结构能够融合不同尺寸的时空域特征,通过多尺度融合来提高分类效果,并减少过拟合现象。与现有方法相比,该方法在训练中的收敛效果和分类效果方面有明显优势。除此之外,我们在保证检测准确率的前提下采用较少的参数,相比现有结构而言训练效率更高。 相似文献
19.
20.
针对当前恶意代码检测方法严重依赖人工提取特征和无法提取恶意代码深层特征的问题,提出一种基于双向长短时记忆(Bidirectional Long Short Term Memory,Bi-LSTM)模型和自注意力的恶意代码检测方法.采用Bi-LSTM自动学习恶意代码样本字节流序列,输出各时间步的隐状态;利用自注意力机制计... 相似文献