首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Network coding is all about combining a variety of packets and forwarding as much packets as possible in each transmission operation. The network coding technique improves the throughput efficiency of multi‐hop wireless networks by taking advantage of the broadcast nature of wireless channels. However, there are some scenarios where the coding cannot be exploited due to the stochastic nature of the packet arrival process in the network. In these cases, the coding node faces 2 critical choices: forwarding the packet towards the destination without coding, thereby sacrificing the advantage of network coding, or waiting for a while until a coding opportunity arises for the packets. Current research works have addressed this challenge for the case of a simple and restricted scheme called reverse carpooling where it is assumed that 2 flows with opposite directions arrive at the coding node. In this paper, the issue is explored in a general sense based on the COPE architecture requiring no assumption about flows in multi‐hop wireless networks. In particular, we address this sequential decision making problem by using the solid framework of optimal stopping theory and derive the optimal stopping rule for the coding node to choose the optimal action to take, ie, to wait for more coding opportunity or to stop immediately (and send packet). Our simulation results validate the effectiveness of the derived optimal stopping rule and show that the proposed scheme outperforms existing methods in terms of network throughput and energy consumption.  相似文献   

2.
In this paper, we study a flow control problem considering network coding in wireless ad-hoc networks with multi-path routing. As a network coding scheme, we use XOR network coding, in which each node bitwise-XORs some packets received from different sessions, and then broadcasts this coded packet to multiple nodes in a single transmission. This process can reduce the number of required transmissions, and thus can improve network utilization, especially if it is used with appropriate network coding-aware protocols. Considering this XOR network coding, we formulate an optimization problem for flow control that aims at maximizing network utility. By solving the optimization problem in a distributed manner, we implement a distributed flow control algorithm that provides the optimal transmitting rate on each of multiple paths of each session. The simulation results show that our flow control algorithm performs well exploiting the advantages of network coding and provides significant performance improvement.  相似文献   

3.
为了提高无线网络广播传输的效率,针对单跳无线网络提出了采用编码方法的广播传输算法。在传统的无线广播传输模型的基础上,分别实现了基于机会式网络编码的单组合分组广播传输算法和多组合分组广播传输算法。它们采用不同的策略选择多个丢失分组编码组合成重传分组,并通过从编码组合数据分组中恢复丢失分组的方式来提高广播传输的吞吐量。仿真结果表明,新算法在不同无线信道传输模型下相比已有的算法有效地降低了广播传输所需的传输带宽。  相似文献   

4.
This letter addresses a scheduling problem for wireless network coding (WNC). In our previous work, we have theoretically shown that the optimum number of nodes to be included into a network?coded packet as well as its transmission rate depends on time?varying link condition between a transmitting node and receiving nodes [1]. Based on this observation, this letter designs practical scheme which opportunistically selects scheduled nodes, packets to be coded and an employed modulation level according to time?varying channel conditions and packet length. The numerical results show that the proposed opportunistic scheduling can improve the overall throughput as compared with non?opportunistic approach.  相似文献   

5.
In this paper, we propose a novel rate adaptive optimization scheme for streaming media transmission over wireless heterogeneous IP networks. In the proposed adaptive scheme, through the analysis of the packet loss characteristics in wireless channel, we develop the relationship between the packet loss rates and the packet sizes. Furthermore, the scheme detects the nature of packet losses by sending large and small packets alternately, and then adopts an adaptive rate optimization strategy to decrease the network congestion and increase the network throughput. Using congestion discrimination and updating factor, the scheme can adapt to the changes of network states quickly and improve delivery quality of wireless multimedia streaming. Simulation results show that, in comparisons to the existing rate optimization algorithms, our proposed scheme offers significantly improved performance in terms of throughput and network congestion, especially when the channel quality is poor in different network topology environments.  相似文献   

6.
We consider multicast communications from a single source to multiple destinations through a wireless network with unreliable links. Random linear network coding achieves the min-cut flow capacity; however, additional overhead is needed for end-to-end error protection and to communicate the network coding matrix to each destination. We present a joint coding and training scheme in which training bits are appended to each source packet, and the channel code is applied across both the training and data. This scheme allows each destination to decode jointly the network coding matrix along with the data without knowledge of the network topology. It also balances the reliability of communicating the network coding matrices with the reliability of data detection. The throughput for this scheme, accounting for overhead, is characterized as a function of the packet size, channel properties (error and erasure statistics), number of independent messages, and field size. We also compare the performance with that obtained by individual channel coding of training and data. Numerical results are presented for a grid network that illustrate the reduction in throughput due to overhead.  相似文献   

7.
WiNoC中EF-ACK容错无线接口设计   总被引:1,自引:0,他引:1       下载免费PDF全文
无线片上网络中的无线信道面临着严重的可靠性挑战,无线路由器的容错设计对整个片上网络的传输效率有着较大的影响.本文提出一种EF-ACK容错无线接口设计,将多条确认信息配置在一个数据包内,通过无线信道传递确认信息数据包;在无线接口处设立重传数据缓冲区,以更高效的方式确认数据以及控制错误数据包的重传;另外,提出了基于网络状态的编解码控制,在网络情况较差时用BCH编码的方式提高数据的鲁棒性.实验表明,本文方案使用了较小的额外面积和功耗开销,高效地完成了对于数据的无线确认反馈,且在错误率较高时,可以保证网络中较低的网络延迟和较高的饱和吞吐量,大大提高了网络的性能.  相似文献   

8.
滕达  杨寿保  孙伟峰  王大鹏 《电子学报》2007,35(8):1521-1526
双向路的车载网络中,两个方向上的数据流在竞争信道时存在严重的不公平现象,使得网络性能急剧下降.针对这种不公平问题,本文经理论分析得出数据包大小Packet与相向行驶车辆间的相对速度V、数据流接入信道几率P及数据流的平均吞吐率Throughput存在的函数关系,提出一种数据包大小自适应调节方案.模拟仿真表明,该方案有效的提高了信道竞争的公平性并能够保证每条数据流相对较高的平均吞吐率.而后本文定义了"SRTS/SCTS"并给出了车辆间相对速度V的获取过程.  相似文献   

9.
Interference has strong effect on the available bandwidth of wireless local area network (WLAN) based mesh networks. The channel assignment problem for multi-radio multi-channel multihop WLAN mesh networks is complex NP-hard, and channel assignment, routing and power control are tightly coupled. To mitigate the co-channel interference and improve capacity in multi-channel and multi-interface WLAN mesh networks, a power-efficient spatial reusable channel assignment scheme is proposed, which considers both channel diversity and spatial reusability to reduce co-channel interference by joint adjusting channel, transmission power and routing. In order to assign channel appropriately, an efficient power control scheme and a simple heuristic algorithm is introduced to achieve this objective, which adjust the channel and power level of each radio according to the current channel conditions so as to increase the opportunity of channel spatial reusability. The proposed channel assignment scheme also takes load, capacity and interference of links into consideration. Simulation results show the effectiveness of our approach and demonstrate that the proposed scheme can get better performance than other approaches in terms of throughput, blocking ratio, energy consumption and end-to-end delay.  相似文献   

10.
为了提高数据包在云计算数据中心中基于虚拟机构成网络中的传输性能,提出了一种基于网络编码的高效数据包传输方法.基于网络编码机制,采用对传输过程中丢失数据包高效的编码组合策略,多个虚拟机终端可以在一次多播或广播传输中获取多个从交换机优先传输的数据包,因此,提出的方法可以提高基于虚拟机网络的多播及广播业务的数据包传输延迟,并提高多播及广播业务的网络吞吐量.仿真结果表明提出的方法在典型信道条件下均获得了较好的数据包传输时延及网络吞吐量性能.  相似文献   

11.
The medium access control protocol determines system throughput in wireless mobile ad hoc networks following the ieee 802.11 standard. Under this standard, asynchronous data transmissions have a defined distributed coordination function that allows stations to contend for channel usage in a distributed manner via the carrier sensing multiple access with collision avoidance protocol. In distributed coordination function, a slotted binary exponential backoff (BEB) algorithm resolves collisions of packets transmitted simultaneously by different stations. The BEB algorithm prevents packet collisions during simultaneous access by randomizing moments at stations attempting to access the wireless channels. However, this randomization does not eliminate packet collisions entirely, leading to reduced system throughput and increased packet delay and drop. In addition, the BEB algorithm results in unfair channel access among stations. In this paper, we propose an enhanced binary exponential backoff algorithm to improve channel access fairness by adjusting the manner of increasing or decreasing the contention window based on the number of the successfully sent frames. We propose several configurations and use the NS2 simulator to analyze network performance. The enhanced binary exponential backoff algorithm improves channel access fairness, significantly increases network throughput capacity, and reduces packet delay and drop. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a power efficient multipath video packet scheduling scheme for minimum video distortion transmission (optimised Video QoS) over wireless multimedia sensor networks. The transmission of video packets over multiple paths in a wireless sensor network improves the aggregate data rate of the network and minimizes the traffic load handled by each node. However, due to the lossy behavior of the wireless channel the aggregate transmission rate cannot always support the requested video source data rate. In such cases a packet scheduling algorithm is applied that can selectively drop combinations of video packets prior to transmission to adapt the source requirements to the channel capacity. The scheduling algorithm selects the less important video packets to drop using a recursive distortion prediction model. This model predicts accurately the resulting video distortion in case of isolated errors, burst of errors and errors separated by a lag. Two scheduling algorithms are proposed in this paper. The Baseline scheme is a simplified scheduler that can only decide upon which packet can be dropped prior to transmission based on the packet’s impact on the video distortion. This algorithm is compared against the Power aware packet scheduling that is an extension of the Baseline capable of estimating the power that will be consumed by each node in every available path depending on its traffic load, during the transmission. The proposed Power aware packet scheduling is able to identify the available paths connecting the video source to the receiver and schedule the packet transmission among the selected paths according to the perceived video QoS (Peak Signal to Noise Ratio—PSNR) and the energy efficiency of the participating wireless video sensor nodes, by dropping packets if necessary based on the distortion prediction model. The simulation results indicate that the proposed Power aware video packet scheduling can achieve energy efficiency in the wireless multimedia sensor network by minimizing the power dissipation across all nodes, while the perceived video quality is kept to very high levels even at extreme network conditions (many sensor nodes dropped due to power consumption and high background noise in the channel).  相似文献   

13.
Link breakage is one of the critical problems that limit the performance of multicast routing in wireless networks. To ease the problem, we apply network coding to the routing operation. In our proposal, data packets are encoded by a random coding scheme. By performing a re-encoding process, the coding scheme is able to keep conveying the data in the network even though link breakage occurs (without the need of waiting for retransmission). To route encoded packets in the network, a disjoint-path tree is used, which is the routing structure constructed by combining a number of multicast trees without the overlapping links among them. Simulation results show that our proposal can effectively ease the impact of link breakage, achieving better packet delivery ratio and higher multicast capacity under different scenarios.  相似文献   

14.
Due to its simplicity and cost efficiency, wireless local area network (WLAN) enjoys unique advantages in providing high-speed and low-cost wireless services in hot spots and indoor environments. Traditional WLAN medium-access-control (MAC) protocols assume that only one station can transmit at a time: simultaneous transmissions of more than one station cause the destruction of all packets involved. By exploiting recent advances in PHY-layer multiuser detection (MUD) techniques, it is possible for a receiver to receive multiple packets simultaneously. This paper argues that such multipacket reception (MPR) capability can greatly enhance the capacity of future WLANs. In addition, the paper provides the MAC-layer and PHY-layer designs needed to achieve the improved capacity. First, to demonstrate MPR as a powerful capacity-enhancement technique, we prove a "superlinearity” result, which states that the system throughput per unit cost increases as the MPR capability increases. Second, we show that the commonly deployed binary exponential backoff (BEB) algorithm in today's WLAN MAC may not be optimal in an MPR system, and the optimal backoff factor increases with the MPR capability, the number of packets that can be received simultaneously. Third, based on the above insights, we design a joint MAC-PHY layer protocol for an IEEE 802.11-like WLAN that incorporates advanced PHY-layer signal processing techniques to implement MPR.  相似文献   

15.
In conventional IEEE 802.11 medium access control protocol, the distributed coordination function is designed for the wireless stations (WSs) to perform channel contention within the wireless local area networks (WLANs). Packet collision is considered one of the major issues within this type of contention-based scheme, which can severely degrade network performance for the WLANs. Research work has been conducted to modify the random backoff mechanism in order to alleviate the packet collision problem while the WSs are contending for channel access. However, most of the existing work can only provide limited throughput enhancement under specific number of WSs within the network. In this paper, an adaptive reservation-assisted collision resolution (ARCR) protocol is proposed to improve packet collision resulting from the random access schemes. With its adaptable reservation period, the contention-based channel access can be adaptively transformed into a reservation-based system if there are pending packets required to be transmitted between the WSs and the access point. Analytical model is derived for the proposed ARCR scheme in order to evaluate and validate its throughput performance. It can be observed from both analytical and simulation results that the proposed protocol outperforms existing schemes with enhanced channel utilization and network throughput.  相似文献   

16.
Network coding (NC) can greatly improve the performance of wireless mesh networks (WMNs) in terms of throughput and reliability, and so on. However, NC generally performs a batch‐based transmission scheme, the main drawback of this scheme is the inevitable increase in average packet delay, that is, a large batch size may achieve higher throughput but also induce larger average packet delay. In this work, we put our focus on the tradeoff between the average throughput and packet delay; in particular, our ultimate goal is to maximize the throughput for real‐time traffic under the premise of diversified and time‐varying delay requirements. To tackle this problem, we propose DCNC, a delay controlled network coding protocol, which can improve the throughput for real‐time traffic by dynamically controlling the delay in WMNs. To define an appropriate control foundation, we first build up a delay prediction model to capture the relationship between the average packet delay and the encoding batch size. Then, we design a novel freedom‐based feedback scheme to efficiently reflect the reception of receivers in a reliable way. Based on the predicted delay and current reception status, DCNC utilizes the continuous encoding batch size adjustment to control delay and further improve the throughput. Extensive simulations show that, when faced with the diversified and time‐varying delay requirements, DCNC can constantly fulfill the delay requirements, for example, achieving over 95% efficient packet delivery ratio (EPDR) in all instances under good channel quality, and also obtains higher throughput than the state‐of‐art protocol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The transmission of packets is considered from one source to multiple receivers over single-hop erasure channels. The objective is to evaluate the stability properties of different transmission schemes with and without network coding. First, the throughput limitation of retransmission schemes is discussed and the stability benefits are shown for randomly coded transmissions, which, however, need not optimize the stable throughput for finite coding field size and finite packet block size. Next, a dynamic scheme is introduced for distributing packets among virtual queues depending on the channel feedback and performing linear network coding based on the instantaneous queue contents. The difference of the maximum stable throughput from the min-cut rate is bounded as function of the order of erasure probabilities depending on the complexity allowed for network coding and queue management. This queue-based network coding scheme can asymptotically optimize the stable throughput to the max-flow min-cut bound, as the erasure probabilities go to zero. This is realized for a finite coding field size without accumulating packet blocks at the source to start network coding. The comparison of random and queue-based dynamic network coding with plain retransmissions opens up new questions regarding the tradeoffs of stable throughput, packet delay, overhead, and complexity.   相似文献   

18.
Existing opportunistic network coding architectures (e.g., COPE) rely on pseudobroadcast to deliver a coded packet to multiple receivers in a single transmission. Only the primary receiver acknowledges the reception by MAC-layer acknowledgements (synchronous ACKs) and the other receivers receive the coded packet by overhearing and acknowledge the reception by asynchronous ACKs, which are usually piggybacked in outgoing data packets. In realistic wireless networks, this mechanism may cause unnecessary retransmissions if asynchronous ACKs are dropped due to packet losses or arrive late and thus compromise the throughput gain brought by network coding. In this paper, we propose a framework of joint rate control and code selection (ORC) to address this issue, aiming at improving the performance gain of opportunistic network coding in wireless networks. The framework of ORC consists of two mechanisms: (1) Rate control: the optimal transmission rate for coded packets is selected by formulating the rate control process as a Finite Horizon Markov Decision Process. (2) Code selection: based on the results of rate selection, the packet combination for forming the coded packet is determined. Numerical results show that ORC can substantially improve the performance gain of opportunistic network coding compared with COPE.  相似文献   

19.
In this paper, we study video streaming over wireless networks with network coding capabilities. We build upon recent work, which demonstrated that network coding can increase throughput over a broadcast medium, by mixing packets from different flows into a single packet, thus increasing the information content per transmission. Our key insight is that, when the transmitted flows are video streams, network codes should be selected so as to maximize not only the network throughput but also the video quality. We propose video-aware opportunistic network coding schemes that take into account both the decodability of network codes by several receivers and the importance and deadlines of video packets. Simulation results show that our schemes significantly improve both video quality and throughput. This work is a first step towards content-aware network coding.  相似文献   

20.
In this paper, a low-complexity cooperative protocol that significantly increases the average throughput of multihop upstream transmissions for wireless tree networks is developed and analyzed. A system in which transmissions are assigned to nodes in a collision free, spatial time division fashion is considered. The suggested protocol exploits the broadcast nature of wireless networks where the communication channel is shared between multiple adjacent nodes within interference range. For any upstream end-to-end flow in the tree, each intermediate node receives information from both one-hop and two-hop neighbors and transmits only sufficient information such that the next upstream one-hop neighbor will be able to decode the packet. This approach can be viewed as the generalization of the classical three node relay channel for end-to-end flows in which each intermediate node becomes successively source, relay and destination. The achievable rate for any regular tree network is derived and an optimal schedule that realizes this rate in most cases is proposed. Our protocol is shown to dramatically outperform the conventional scheme where intermediate nodes simply forward the packets hop by hop. At high signal-to-noise ratio (SNR), it yields approximately 66% throughput gain for practical scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号