首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Translation of mitochondrial mRNAs in Saccharomyces cerevisiae depends on mRNA-specific translational activators that recognize the 5' untranslated leaders (5'-UTLs) of their target mRNAs. We have identified mutations in two new nuclear genes that suppress translation defects due to certain alterations in the 5'-UTLs of both the COX2 and COX3 mRNAs, indicating a general function in translational activation. One gene, MRP21, encodes a protein with a domain related to the bacterial ribosomal protein S21 and to unidentified proteins of several animals. The other gene, MRP51, encodes a novel protein whose only known homolog is encoded by an unidentified gene in S. kluyveri. Deletion of either MRP21 or MRP51 completely blocked mitochondrial gene expression. Submitochondrial fractionation showed that both Mrp21p and Mrp51p cosediment with the mitochondrial ribosomal small subunit. The suppressor mutations are missense substitutions, and those affecting Mrp21p alter the region homologous to E. coli S21, which is known to interact with mRNAs. Interactions of the suppressor mutations with leaky mitochondrial initiation codon mutations strongly suggest that the suppressors do not generally increase translational efficiency, since some alleles that strongly suppress 5'-UTL mutations fail to suppress initiation codon mutations. We propose that mitochondrial ribosomes themselves recognize a common feature of mRNA 5'-UTLs which, in conjunction with mRNA-specific translational activation, is required for organellar translation initiation.  相似文献   

2.
In amino acid-starved yeast cells, inhibition of the guanine nucleotide exchange factor eIF2B by phosphorylated translation initiation factor 2 results in increased translation of GCN4 mRNA. We isolated a suppressor of a mutant eIF2B. The suppressor prevents efficient GCN4 mRNA translation due to inactivation of the small ribosomal subunit protein Rps31 and results in low amounts of mutant 40 S ribosomal subunits. Deletion of one of two genes encoding ribosomal protein Rps17 also reduces the amounts of 40 S subunits but does not suppress eIF2B mutations or prevent efficient GCN4 translation. Our findings show that Rps31-deficient ribosomes are altered in a way that decreases the eIF2B requirement and that the small ribosomal subunit mediates the effects of low eIF2B activity on cell viability and translational regulation in response to eIF2 phosphorylation.  相似文献   

3.
We have isolated and characterized two suppressor genes, SUI4 and SUI5, that can initiate translation in the absence of an AUG start codon at the HIS4 locus in Saccharomyces cerevisiae. Both suppressor genes are dominant in diploid cells and lethal in haploid cells. The SUI4 suppressor gene is identical to the GCD11 gene, which encodes the gamma subunit of the eIF-2 complex and contains a mutation in the G2 motif, one of the four signature motifs that characterizes this subunit to be a G-protein. The SUI5 suppressor gene is identical to the TIF5 gene that encodes eIF-5, a translation initiation factor known to stimulate the hydrolysis of GTP bound to eIF-2 as part of the 43S preinitiation complex. Purified mutant eIF-5 is more active in stimulating GTP hydrolysis in vitro than wild-type eIF-5, suggesting that an alteration of the hydrolysis rate of GTP bound to the 43S preinitiation complex during ribosomal scanning allows translation initiation at a non-AUG codon. Purified mutant eIF-2gamma complex is defective in ternary complex formation and this defect correlates with a higher rate of dissociation from charged initiator-tRNA in the absence of GTP hydrolysis. Biochemical characterization of SUI3 suppressor alleles that encode mutant forms of the beta subunit of eIF-2 revealed that these mutant eIF-2 complexes have a higher intrinsic rate of GTP hydrolysis, which is eIF-5 independent. All of these biochemical defects result in initiation at a UUG codon at the his4 gene in yeast. These studies in light of other analyses indicate that GTP hydrolysis that leads to dissociation of eIF-2 x GDP from the initiator-tRNA in the 43S preinitiation complex serves as a checkpoint for a 3-bp codon/anticodon interaction between the AUG start codon and the initiator-tRNA during the ribosomal scanning process.  相似文献   

4.
Numerous studies have linked the overexpression of the Mr 37,000 laminin receptor precursor (37-LRP) to tumor cell growth and proliferation. The role of this protein in carcinogenesis is generally considered in the context of its putative role as a precursor for the Mr 67,000 high-affinity laminin receptor. Recent studies have shown that 37-LRP, also termed p40, is a component of the small ribosomal subunit indicating that it may be a multifunctional protein. The p40/37-LRP protein is highly conserved phylogenetically, and closely related proteins have been identified in species as evolutionarily distant as humans and the yeast, Saccharomyces cerevisiae. Yeast homologues of p40/37-LRP are encoded by a duplicated pair of genes, RPS0A and RPS0B. The Rps0 proteins are essential components of the 40S ribosomal subunit. Previous results have shown that cells disrupted in either of the RPS0 genes have a reduction in growth rate and reduced amounts of 40S ribosomal subunits relative to wild-type cells. Here, we show that the Rps0 proteins are required for the processing of the 20S rRNA-precursor to mature 18S rRNA, a late step in the maturation of 40S ribosomal subunits. Immature subunits that are depleted of Rps0 protein that contain the 20S rRNA precursor are preferentially excluded from polysomes, which indicates that their activity in protein synthesis is dramatically reduced relative to mature 40S ribosomal subunits. These data demonstrate that the assembly of Rps0 proteins into immature 40S subunits and the subsequent processing of 20S rRNA represent critical steps in defining the translational capacity of yeast cells. If the function of these yeast proteins is representative of other members of the p40/37-LRP family of proteins, then the role of these proteins as key components of the protein synthetic machinery should also be considered as a basis for the linkage between the their overexpression and tumor cell growth and proliferation.  相似文献   

5.
6.
Eukaryotic initiation factor 3 (eIF3) consists of at least eight subunits and plays a key role in the formation of the 43 S preinitiation complex by dissociating 40 and 60 S ribosomal subunits, stabilizing the ternary complex, and promoting mRNA binding to 40 S ribosomal subunits. The product of the Saccharomyces cerevisiae RPG1 gene has been described as encoding a protein required for passage through the G1 phase of the cell cycle and exhibiting significant sequence similarity to the largest subunit of human eIF3. Here we show that under nondenaturing conditions, Rpg1p copurifies with a known yeast eIF3 subunit, Prt1p. An anti-Rpg1p antibody co-immunoprecipitates Prt1p, and an antibody directed against the Myc tag of a tagged version of Prt1p co-immunoprecipitates Rpg1p, demonstrating that both proteins are present in the same complex. A cell-free translation system derived from the temperature-sensitive rpg1-1 mutant strain becomes inactivated by incubation at 37 degreesC, and its activity can be restored by the addition of the Rpg1-containing protein complex. Finally, the rpg1-1 temperature-sensitive mutant strain shows a dramatic reduction of the polysome/monosome ratio upon shift to the restrictive temperature. These data show that Rpg1p is an authentic eIF3 subunit and plays an important role in the initiation step of translation.  相似文献   

7.
A previously uncharacterized Saccharomyces cerevisiae gene, FAL1, was found by sequence comparison as a homolog of the eukaryotic translation initiation factor 4A (eIF4A). Fal1p has 55% identity and 73% similarity on the amino acid level to yeast eIF4A, the prototype of ATP-dependent RNA helicases of the DEAD-box protein family. Although clearly grouped in the eIF4A subfamily, the essential Fal1p displays a different subcellular function and localization. An HA epitope-tagged Fal1p is localized predominantly in the nucleolus. Polysome analyses in a temperature-sensitive fal1-1 mutant and a Fal1p-depleted strain reveal a decrease in the number of 40S ribosomal subunits. Furthermore, these strains are hypersensitive to the aminoglycoside antibiotics paromomycin and neomycin. Pulse-chase labeling of pre-rRNA and steady-state-level analysis of pre-rRNAs and mature rRNAs by Northern hybridization and primer extension in the Fal1p-depleted strain show that Fal1p is required for pre-rRNA processing at sites A0, A1, and A2. Consequently, depletion of Fal1p leads to decreased 18S rRNA levels and to an overall deficit in 40S ribosomal subunits. Together, these results implicate Fal1p in the 18S rRNA maturation pathway rather than in translation initiation.  相似文献   

8.
RNA sites that contain unpaired or mismatched nucleotides can be interaction sites for other macromolecules. C1054, a virtually universally conserved nucleotide in the 16 S (small subunit) ribosomal RNA of Escherichia coli, is part of a highly conserved bulge in helix 34, which has been located at the decoding site of the ribosome. This helix has been implicated in several translational events, including peptide chain termination and decoding accuracy. Here, we observed interesting differences in phenotype associated with the three base substitutions at, and the deletion of, nucleotide C1054. The phenotypes examined include suppression of nonsense codons on different media and at different temperatures, lethality conditioned by temperature and level of expression of the mutant rRNA, ribosome profiles upon centrifugation through sucrose density gradients, association of mutant 30 S subunits with 50 S subunits, and effects on the action of tRNA suppressor mutants. Some of our findings contradict previously reported properties of individual mutants. Particularly notable is our finding that the first reported 16 S rRNA suppressor of UGA mutations was not a C1054 deletion but rather the base substitution C1054A. After constructing deltaC1054 by site-directed mutagenesis, we observed, among other differences, that it does not suppress any of the trpA mutations previously reported to be suppressed by the original UGA suppressor. In general, our results are consistent with the suggestion that the termination codon readthrough effects of mutations at nucleotide 1054 are the result of defects in peptide chain termination rather than of decreases in general translational accuracy. The phenotypic heterogeneity associated with different mutations at this one nucleotide position may be related to the mechanisms of involvement of this nucleotide, the two-nucleotide bulge, and/or helix 34 in particular translational events. In particular, previous indications from other laboratories of conformational changes associated with this region are consistent with differential effects of 1054 mutations on RNA-RNA or RNA-protein interactions. Finally, the association of a variety of phenotypes with different changes at the same nucleotide may eventually shed light on speculations about the coevolution of parts of ribosomal RNA with other translational macromolecules.  相似文献   

9.
Nuclear mutations that inactivate the Saccharomyces cerevisiae gene PET127 dramatically increased the levels of mutant COX3 and COX2 mitochondrial mRNAs that were destabilized by mutations in their 5' untranslated leaders. The stabilizing effect of pet127 delta mutations occurred both in the presence and in the absence of translation. In addition, pet127 delta mutations had pleiotropic effects on the stability and 5' end processing of some wild-type mRNAs and the 15S rRNA but produced only a leaky nonrespiratory phenotype at 37 degrees C. Overexpression of PET127 completely blocked respiratory growth and caused cells to lose wild-type mitochondrial DNA, suggesting that too much Pet127p prevents mitochondrial gene expression. Epitope-tagged Pet127p was specifically located in mitochondria and associated with membranes. These findings suggest that Pet127p plays a role in RNA surveillance and/or RNA processing and that these functions may be membrane bound in yeast mitochondria.  相似文献   

10.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit protein complex that plays an essential role in the binding of the initiator methionyl-tRNA and mRNA to the 40S ribosomal subunit to form the 40S initiation complex. cDNAs encoding all the subunits of mammalian eIF3 except the p42 subunit have been cloned in several laboratories. Here we report the cloning and characterization of a human cDNA encoding the p42 subunit of mammalian eIF3. The open reading frame of the cDNA, which encodes a protein of 320 amino acids (calculated Mr35 614) has been expressed in Escherichia coli and the recombinant protein has been purified to homogeneity. The purified protein binds RNA in agreement with the presence of a putative RNA binding motif in the deduced amino acid sequence. The protein shows 33% identity and 53% similarity with the Tif35p subunit (YDR 429C) of yeast eIF3. Transfection experiments demonstrated that polyhistidine-tagged p42 protein, transiently expressed in human U20S cells, was incorporated into endogenous eIF3. Furthermore, eIF3 isolated from transfected cell lysates contains bound eIF5 indicating that a specific physical interaction between eIF5 and eIF3 may play an important role in the function of eIF5 during translation initiation in eukaryotic cells.  相似文献   

11.
The oxazolidinones represent a new class of antimicrobial agents which are active against multidrug-resistant staphylococci, streptococci, and enterococci. Previous studies have demonstrated that oxazolidinones inhibit bacterial translation in vitro at a step preceding elongation but after the charging of N-formylmethionine to the initiator tRNA molecule. The event that occurs between these two steps is termed initiation. Initiation of protein synthesis requires the simultaneous presence of N-formylmethionine-tRNA, the 30S ribosomal subunit, mRNA, GTP, and the initiation factors IF1, IF2, and IF3. An initiation complex assay measuring the binding of [3H]N-formylmethionyl-tRNA to ribosomes in response to mRNA binding was used in order to investigate the mechanism of oxazolidinone action. Linezolid inhibited initiation complex formation with either the 30S or the 70S ribosomal subunits from Escherichia coli. In addition, complex formation with Staphylococcus aureus 70S tight-couple ribosomes was inhibited by linezolid. Linezolid did not inhibit the independent binding of either mRNA or N-formylmethionyl-tRNA to E. coli 30S ribosomal subunits, nor did it prevent the formation of the IF2-N-formylmethionyl-tRNA binary complex. The results demonstrate that oxazolidinones inhibit the formation of the initiation complex in bacterial translation systems by preventing formation of the N-formylmethionyl-tRNA-ribosome-mRNA ternary complex.  相似文献   

12.
The rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal AUG codon is abrogated under rare conditions. One circumstance that has been suggested to allow dual initiation is close apposition of a second AUG codon. A possible mechanism might be that the scanning 40S ribosomal subunit flutters back and forth instead of stopping cleanly at the first AUG. This hypothesis seems to be ruled out by evidence presented herein that in certain mRNAs, the first of two close AUG codons is recognized uniquely. To achieve this, the 5' proximal AUG has to be provided with the full consensus sequence; even small departures allow a second nearby AUG codon to be reached by leaky scanning. This context-dependent leaky scanning unexpectedly fails when the second AUG codon is moved some distance from the first. A likely explanation, based on analyzing the accessibility of a far-downstream AUG codon under conditions of initiation versus elongation, is that 80S elongating ribosomes advancing from the 5' proximal start site can mask potential downstream start sites.  相似文献   

13.
14.
15.
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.  相似文献   

16.
The peripherin gene has three potential ATG translation initiation sites at positions 38, 56, and 290. The second ATG has been proposed to be the initiation codon used for translation of the protein, but there is no experimental evidence for this conjecture. We have isolated a full-length peripherin cDNA (designated as p61-11) from a rat brain cDNA library. Upon sequencing, we found that this cDNA contains a point mutation at the second potential translation initiation codon, which changes this ATG to ACG. When expressed in SW13 cl.2 vim- cells, a cell line without any detectable cytoplasmic intermediate filaments, the protein product of p61-11 cannot form a filamentous network and the major product is 45 kDa in size, which is most likely initiated from the third ATG. The protein product from the first ATG (57 kDa in size) of p61-11 is also detected albeit in smaller amounts. We introduced a frame-shift mutation upstream of the third ATG in p61-11 to create p61-11FS and showed that the third ATG is able to initiate translation efficiently even in the presence of the first ATG, and the 45 kDa protein leads to a diffuse nonfilamentous staining pattern in vim- cells confirming that the first ATG may not be the preferred translation initiation codon, since it cannot suppress a downstream ATG. We increased the translation efficiency from the first ATG of p61-11 by mutating the three nucleotides preceding this first ATG and thereby placing it in a better Kozak consensus sequence for translation initiation. The resulting 57 kDa protein is able to form a filamentous network in vim- cells. We corrected the mutation in the original p61-11 by polymerase chain reaction and generated two peripherin constructs: perM1M2 (which contains all three translation initiation codons) and per delta 1M2 (the first ATG is deleted, but the other two are present). When transfected, their protein products, about 57 kDa in size, form filamentous networks in the absence of other cytoplasmic intermediate filaments. Since there is no 45 kDa protein detected for these latter two constructs, it is reasonable to conclude that in the presence of the second ATG, little or no translation is initiated from the third ATG. Taken together, these results strongly suggest that the second ATG is the preferred translation initiation codon for the peripherin gene.  相似文献   

17.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit complex that plays a central role in the initiation of translation. It binds to 40 S ribosomal subunits resulting in dissociation of 80 S ribosomes, stabilizes initiator methionyl-tRNA binding to 40 S subunits, and is required for mRNA binding. eIF3 has an aggregate molecular mass of approximately 600 kDa and comprises at least 10 subunits. The cDNAs encoding eight of the subunits have been cloned previously (p170, p116, p110, p66, p48, p47, p40, and p36). Here we report the cloning and characterization of human cDNAs encoding two more subunits of human eIF3, namely eIF3-p44 and eIF3-p35. These proteins are immunoprecipitated by affinity-purified anti-eIF3-p170 antibodies, indicating they are components of the eIF3 complex. Far Western analysis shows that eIF3-p44 interacts strongly and specifically with the eIF3-p170 subunit, and weakly with p116/p110, p66, p40, and itself. eIF3-p44 contains an RNA recognition motif near its C terminus. Northwestern blotting shows that eIF3-p44 binds 18 S rRNA and beta-globin mRNA. Possession of cloned cDNAs encoding all 10 subunits of eIF3 provides the tools necessary to elucidate the functions of the individual subunits and the structure of the eIF3 complex.  相似文献   

18.
Conservation and diversity of eukaryotic translation initiation factor eIF3   总被引:1,自引:0,他引:1  
The largest of the mammalian translation initiation factors, eIF3, consists of at least eight subunits ranging in mass from 35 to 170 kDa. eIF3 binds to the 40 S ribosome in an early step of translation initiation and promotes the binding of methionyl-tRNAi and mRNA. We report the cloning and characterization of human cDNAs encoding two of its subunits, p110 and p36. It was found that the second slowest band during polyacrylamide gel electrophresis of eIF3 subunits in sodium dodecyl sulfate contains two proteins: p110 and p116. Analysis of the cloned cDNA encoding p110 indicates that its amino acid sequence is 31% identical to that of the yeast protein, Nip1. The p116 cDNA was cloned and characterized as a human homolog of yeast Prt1, as described elsewhere (Methot, N., Rom, E., Olsen, H., and Sonenberg, N. (1997) J. Biol. Chem. 272, 1110-1116). p36 is a WD40 repeat protein, which is 46% identical to the p39 subunit of yeast eIF3 and is identical to TRIP-1, a phosphorylation substrate of the TGF-beta type II receptor. The p116, p110, and p36 subunits localize on 40 S ribosomes in cells active in translation and co-immunoprecipitate with affinity-purified antibodies against the p170 subunit, showing that these proteins are integral components of eIF3. Although p36 and p116 have homologous protein subunits in yeast eIF3, the p110 homolog, Nip1, is not detected in yeast eIF3 preparations. The results indicate both conservation and diversity in eIF3 between yeast and humans.  相似文献   

19.
Eukaryotic initiation factor (eIF)-2B, the guanine nucleotide exchange factor for eIF-2, consists of five distinct subunits in both mammals and the yeast Saccharomyces cerevisiae. The exchange reaction mediated by eIF-2B can be regulated by phosphorylation of eIF-2 on its alpha-subunit. This represents a key control point in the initiation of translation. The functions of the individual subunits of the eIF-2B complex remain unclear. Mutational analysis in Saccharomyces cerevisiae suggested that the smallest subunit (the alpha) is dispensable for exchange, but required for the inhibition of eIF-2B by eIF-2(alphaP). Here we present evidence that, in mammalian cells, eIF-2Balpha is essential for the activity of the complex, since preparations of eIF-2B lacking this subunit are not active in nucleotide exchange in vitro, although the complex still contains the beta, gamma, delta and epsilon subunits.  相似文献   

20.
Eukaryotic translation initiation factor 2 (eIF-2) is a heterotrimer composed of three subunits designated alpha, beta, and gamma. These proteins exist in equimolar amounts in the cell and have not been detected as isolated subunits. Our research examines the basis of their balanced synthesis. Northern analysis of K562 cell mRNA revealed that eIF-2 beta was five times more abundant than eIF-2 alpha. However, immunoprecipitation of pulse-labeled K562 cells showed an equimolar rate of synthesis of eIF-2 alpha and -beta despite the 5-fold difference in the size of their mRNA pools. Addition of equal amounts of synthetic capped mRNA for eIF-2 alpha and eIF-2 beta to an in vitro translation reaction produced five times more eIF-2 alpha protein than eIF-2 beta. Determination of the polysome profile for alpha and beta mRNA in K562 cells indicated eIF-2 alpha was translated more efficiently than eIF-2 beta. Substitution of either the initiation codon context or the leader of the beta mRNA for that of alpha had only a minor effect on the translational efficiency of beta. Comparison of the rate of ribosomal elongation for the two mRNAs indicated that ribosomes associated with the beta mRNA elongate at a rate 4-fold less than that of eIF-2 alpha. Thus, the balanced translation of alpha and beta mRNA is primarily the result of a 4-fold difference in the rate of ribosomal elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号