首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
柴油/CNG双燃料发动机排放性能的试验研究   总被引:2,自引:0,他引:2  
在设计开发的CA6113BN-01柴油/CNG双燃料发动机的基础上,通过改变燃烧系统参数,柴油供油系统参数和在天然气供气系统参数等,研究了这些参数变化时对柴油/CNG双燃料发动机排放特性的影响。试验结果表明:柴油/CNG双燃料发动机的燃烧室形状对双燃料发动机性能,排放的影响较小。NOx、HC排放量随提前角的变化趋势和柴油机相似,提前角增大,NOx排放量增加,HC排放量也增加,提前角对CO排放影响较小。喷油器的开启压力提高可以有效地改善双燃料发动机的排放。  相似文献   

2.
在能源结构优化、环境污染控制、气候变化约束的驱动下,天然气汽车具有较高的发展潜力。天然气汽车动力源主要有4种形式:压缩天然气(CNG)单一燃料发动机(燃料是天然气或天然气掺氢)、CNG汽油两用燃料发动机、CNG柴油双燃料发动机、液化天然气(LNG)发动机。天然气汽车主要应用于我国交通运输行业营运车辆,主要以CNG汽车、CNG/汽油两用燃料汽车的形式在出租车中应用;以CNG汽车形式在公交车中应用;以LNG汽车形式在重卡中应用。天然气汽车未来应该大力发展LNG重卡;保持CNG公交客车比例,并推动气电混合动力公交的发展;将两用燃料出租车逐步替换为CNG汽车。发展天然气汽车对我国能源结构优化、交通运输节能减排具有重要意义。  相似文献   

3.
CNG/柴油双燃料发动机供气技术发展与趋势   总被引:1,自引:0,他引:1  
详细介绍并分析了CNG/柴油双燃料发动机的天然气预混合供气、进气喷射、缸内直接喷气技术,指出了CNG/柴油双燃料发动机技术的发展趋势是:将天然气电控多点顺序气口喷射和柴油共轨喷射技术相互结合。  相似文献   

4.
CNG/柴油双燃料发动机供气技术研究   总被引:4,自引:0,他引:4  
徐国强  高献坤  侯瑞娟 《内燃机》2004,(5):15-17,21
在详细介绍并分析CNG/柴油双燃料发动机的天然气预混合供气、进气喷射、缸内直接喷气方式的基础上,指出了CNG/柴油双燃料发动机技术的发展趋势是天然气电控多点顺序气口喷射和柴油的共轨喷射技术的结合。  相似文献   

5.
在分析柴油/CNG双燃料发动机高THC排放来源的基础上,首次提出“柴油/CNG双燃料发动机加氢燃烧”的概念.利用氢燃烧速度快,燃烧界限宽,比热值小,淬熄长度长等特点,改善气体燃料的燃烧特性,达到降低THC排放的目的.试验中,在ZH1115单缸直喷柴油机的进气口加装电控喷气阀,实现了CNG和氢气的可控比例气口喷射,并且在这台发动机上进行了纯柴油、双燃料(柴油/CNG)和双燃料加氢的比较试验.研究了加氢对柴油/CNG双燃料发动机排放特性和经济性能的影响.研究表明,双燃料加氢后可以缩短滞燃期和燃烧持续期,明显改善柴油/CNG双燃料发动机的THC和CO排放,提高发动机的经济性.  相似文献   

6.
在神龙富康化油器汽车改为汽油/CNG两用燃料汽车后,整车重量增加55kg动力性下降19%,CO排放增大达25.6倍,HC下降28%.所以化油器式汽车在改用天然气后应对燃烧系统进行必要的调整,否则改用天然气的优越性不能充分的体现出来.而调整后再燃用汽油时就可能引起爆震或残余废气过高.因此应尽可能缩短汽油/CNG两用燃料汽车的过渡时间,加快CNG加气站的建设,将两用燃料汽车改为纯CNG汽车。  相似文献   

7.
将一台6缸、增压中冷柴油机改装为混合器进气方式的柴油—天然气双燃料发动机,对其燃烧系统参数对双燃料发动机排放和经济性的影响进行了实验研究,包括引燃柴油喷油时刻、天然气替代率、中冷后进气温度的影响。双燃料发动机的排放与空燃比及燃烧系统参数密切相关。替代率增加时,排气烟度降低,HC排放升高,当量燃油消耗率升高,CO排放在替代率较小时随替代率增加而升高,但在替代率较高时随替代率增加而略有降低。替代率对NOx排放的影响则与发动机工况有关,在最大转矩和低速大负荷工况,空燃比值较小,NOx排放随替代率的升高而增大;在标定功率工况,空燃比较大,NOx排放随替代率的升高而减小。提前角减小,NOx排放降低。中冷后温度升高,碳烟排放和NOx排放升高,HC和CO排放降低,当量燃油消耗率降低。研究结果表明,采用增压中冷技术、提高CNG替代率、减小引燃柴油喷油提前角,能够有效地降低双燃料发动机的有害排放物。  相似文献   

8.
《柴油机》2000,(2)
杭州汽车发动机厂于 1998年始开发压缩天然气和柴油双燃料增压发动机。他们同天津大学合作研制的电控双燃料斯太尔柴油机,经测试排放指标达到欧I标准。 期间还同西安交通大学联合开发了双燃料汽车用发动机,为陕西汽车制造厂生产的公交车配套。该双燃料柴油汽车可大幅度降低排气烟度和颗粒。目前己投入小批量生产。杭汽开发双燃料发动机  相似文献   

9.
提要把以柴油机为基础的CNG发动机(燃用压缩天然气的火花点火式发动机)装在运垃圾的汽车上,已确认其作为低公害车的排放水平和动力性能.采用空燃比控制和三元催化剂作为降低排放的措施,达到了采用同样措施的汽油机的排放水平.另外,还可以得到高于原柴油机功率的动力性能.  相似文献   

10.
根据我国天然气组分随产地、季节变化的情况,选取四种具有代表性的天然气作为研究对象,通过建立单缸点火CNG发动机仿真模型,运用GT-POWER进行模拟计算。模拟结果表明:不同组分天然气对发动机动力性能影响有限;以全国平均气的有效燃油消耗为基准,四川气、东海气、凝析气的有效燃油消耗分别上升1.8%、6.5%、6.43%;以四川天然气为基准,东海气、平均气以及凝析气的CO排放分别上升16.5%、17.4%、22.6%;NO排放分别上升-0.92%、5.9%、7.5%。综合考虑动力、经济及排放特性,选用四川天然气为CNG汽车的最佳燃料。  相似文献   

11.
《Journal of power sources》2006,155(2):297-310
The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to the use of recycled material. It is found that using 100% recycled material can reduce energy consumption by 45% and carbon dioxide emissions by 42%, mainly due to the reduced use of electricity during the manufacturing of the material.  相似文献   

12.
Emissions of multiple hydrogen production pathways from fossil sources were evaluated and compared with that of fossil fuel production pathways in China by using the life cycle assessment method. The considered hydrogen pathways are gasoline reforming, diesel reforming, natural gas reforming, soybean‐derived biodiesel (s‐biodiesel) reforming, and waste cooking oil‐derived biodiesel reforming. Moreover, emissions and energy consumption of fuel cell vehicles utilizing hydrogen from different fossil sources were presented and compared with those of the electric vehicle, the internal combustion engine vehicle, and the compression ignition engine vehicle. The results indicate both fuel cell vehicles and the electric vehicle have less greenhouse gas emissions and energy consumption compared with the traditional vehicle technologies in China. Based on an overall performance comparison of five different fuel cell vehicles and the electric vehicle in China, fuel cell vehicles operating on hydrogen produced from natural gas and waste cooking oil‐derived biodiesel show the best performance, whereas the electric vehicle has the worse performance than all the fuel cell vehicles because of very high share of coal in the electricity mix of China. The emissions of electric vehicle in China will be in the same level with that of natural gas fuel cell vehicle if the share of coal decreases to around 40% and the share of renewable energy increases to around 20% in the electricity mix of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO2 emissions price pathway that achieves 450 ppmv CO2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy.  相似文献   

14.
Considerable attention has been paid to energy security and climate problems caused by road vehicle fleets. Fuel cell vehicles provide a new solution for reducing energy consumption and greenhouse gas emissions, especially those from heavy-duty trucks. Although cost may become the key issue in fuel cell vehicle development, with technological improvements and cleaner pathways for hydrogen production, fuel cell vehicles will exhibit great potential of cost reduction. In accordance with the industrial plan in China, this study introduces five scenarios to evaluate the impact of fuel cell vehicles on the road vehicle fleet greenhouse gas emissions in China. Under the most optimistic scenario, greenhouse gas emissions generated by the whole fleet will decrease by 13.9% compared with the emissions in a scenario with no fuel cell vehicles, and heavy-duty truck greenhouse gas emissions will decrease by nearly one-fifth. Greenhouse gas emissions intensity of hydrogen production will play an essential role when fuel cell vehicles' fuel cycle greenhouse gas emissions are calculated; therefore, hydrogen production pathways will be critical in the future.  相似文献   

15.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation.  相似文献   

16.
The operation of hydrogen fuel cell electric vehicles (HFCEVs) is more efficient than that of gasoline conventional internal combustion engine vehicles (ICEVs), and produces zero tailpipe pollutant emissions. However, the production, transportation, and refueling of hydrogen are more energy- and emissions-intensive compared to gasoline. A well-to-wheels (WTW) energy use and emissions analysis was conducted to compare a HFCEV (Toyota Mirai) with a gasoline conventional ICEV (Mazda 3). Two sets of specific fuel consumption data were used for each vehicle: (1) fuel consumption derived from the U.S. Environmental Protection Agency's (EPA's) window-sticker fuel economy figure, and (2) weight-averaged fuel consumption based on physical vehicle testing with a chassis dynamometer on EPA's five standard driving cycles. The WTW results show that a HFCEV, even fueled by hydrogen from a fossil-based production pathway (via steam methane reforming of natural gas), uses 5%–33% less WTW fossil energy and has 15%–45% lower WTW greenhouse gas emissions compared to a gasoline conventional ICEV. The WTW results are sensitive to the source of electricity used for hydrogen compression or liquefaction.  相似文献   

17.
Air pollution is a serious public health problem throughout the world, especially in industrialized and developing countries. In industrialized and developing countries, motor vehicle emissions are major contributors to urban air quality. Hydrogen is one of the clean fuel options for reducing motor vehicle emissions. Hydrogen is not an energy source. It is not a primary energy existing freely in nature. Hydrogen is a secondary form of energy that has to be manufactured like electricity. It is an energy carrier. Hydrogen has a strategic importance in the pursuit of a low-emission, environment-benign, cleaner and more sustainable energy system. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. It has much wider limits of flammability in air than methane and gasoline. Hydrogen has become the dominant transport fuel, and is produced centrally from a mixture of clean coal and fossil fuels (with C-sequestration), nuclear power, and large-scale renewables. Large-scale hydrogen production is probable on the longer time scale. In the current and medium term the production options for hydrogen are first based on distributed hydrogen production from electrolysis of water and reforming of natural gas and coal. Each of centralized hydrogen production methods scenarios could produce 40 million tons per year of hydrogen. Hydrogen production using steam reforming of methane is the most economical method among the current commercial processes. In this method, natural gas feedstock costs generally contribute approximately 52–68% to the final hydrogen price for larger plants, and 40% for smaller plants, with remaining expenses composed of capital charges. The hydrogen production cost from natural gas via steam reforming of methane varies from about 1.25 US$/kg for large systems to about 3.50 US$/kg for small systems with a natural gas price of 6 US$/GJ. Hydrogen is cheap by using solar energy or by water electrolysis where electricity is cheap, etc.  相似文献   

18.
With the increasing need to reduce greenhouse gas emission and adopt sustainability in combustion systems, injection of renewable gases into the pipeline natural gas is of great interest. Due to high specific energy density and various potential sources, hydrogen is a competitive energy carrier and a promising gaseous fuel to replace natural gas in the future. To test the end use impact of hydrogen injection into the natural gas pipeline infrastructure, the present study has been carried out to evaluate the fuel interchangeability between hydrogen and natural gas in a residential commercial oven burner. Various combustion performance characteristics were evaluated, including flashback limits, ignition performance, flame characteristics, combustion noise, burner temperature and emissions (NO, NO2, N2O, CO, UHC, NH3). Primary air entrainment process was also investigated. Several correlations for predicting air entrainment were compared and evaluated for accuracy based on the measured fuel/air concentration results in the burner. The results indicate that 25% (by volume) hydrogen can be added to natural gas without significant impacts. Above this amount, flashback in the burner tube is the limiting factor. Hydrogen addition has minimal impact on NOX emission while expectedly decreasing CO emissions. As the amount of hydrogen increases in the fuel, the ability of the fuel to entrain primary air decreases.  相似文献   

19.
Energy security and climate change are critical concerns in the present era. The booming of the vehicle population has worsened the environment and has caused severe air pollution problems, especially in urban areas. The utilization of hydrogen-enriched compressed natural gas in internal combustion engines shows abundant prospects for improved performance and reduced on-road emissions of greenhouse gases and air pollutants. This study aims to provide an insight to well-to-wheels environmental implications of the 20%HCNG fuel mixture in terms of total energy use, and greenhouse gas emissions per megajoules (MJ) of thermal energy output. The well-to-tank (WTT) impacts were evaluated using GREET 1 (2017). GREET 1 is a fuel cycle modeling tool developed by ‘Argonne national laboratory.’ GREET® is extensively used by researchers worldwide to analytically simulate energy use and emission output of various vehicle and fuel combinations. This study uses 12 prospective pathways of gaseous hydrogen production for analysis purposes. In the tank-to-wheels (TTW) phase, the 20%HCNG@EEV reduces the brake specific energy consumption (BSEC) by approximately 5%, and also decreases GHG emissions by 14% compared with 0%HCNG@EURO3. For simplicity, EURO5 is entitled as ‘EEV’ and has been excluded in most of the discussion, only highlighting ‘EEV,’ which abbreviates as ‘Enhanced Environmentally friendly Vehicles.’ For the entire well-to-wheels phase, this research work shows that all of the 20%HCNG@EEV pathways have lower total energy use and GHG emissions than 0%HCNG@EURO3 except the two pathways, such as grid electricity-to-hydrogen (without CO2 sequestration) and coal gasification-to-hydrogen (without CO2 sequestration). The WTW total energy and GHG emissions reduced by approximately 14% and 13%, respectively, with 20%HCNG@EEV based on the coke oven gas pathway compared with 0%HCNG@EURO3. It is essential to note that the use of cleaner feedstock for hydrogen, such as power-to-gas (P2G), biomass, coke oven gas (by-product), and natural gas shows tremendous prospects for realizing and practicing sustainable ‘hydrogen economy’ in China. Further technological advancement and reduction in total costs of HCNG utilization in powertrains will increase the number of HCNG vehicles decreasing the burden of air pollution, climate change, and energy crisis threats.  相似文献   

20.
With the increasing concern regarding diesel vehicle emissions and the rising cost of the liquid diesel fuel as well, more conventional diesel engines internationally are pursuing the option of converting to use natural gas as a supplement for the conventional diesel fuel (dual fuel natural gas/diesel engines). The most common natural gas/diesel operating mode is referred to as the pilot ignited natural gas diesel engine (PINGDE) where most of the engine power output is provided by the gaseous fuel while a pilot amount of the liquid diesel fuel injected near the end of the compression stroke is used only as an ignition source of the gaseous fuel–air mixture. The specific engine operating mode, in comparison with conventional diesel fuel operation, suffers from low brake engine efficiency and high carbon monoxide (CO) emissions. In order to be examined the effect of increased air inlet temperature combined with increased pilot fuel quantity on performance and exhaust emissions of a PINGD engine, a theoretical investigation has been conducted by applying a comprehensive two-zone phenomenological model on a high-speed, pilot ignited, natural gas diesel engine located at the authors' laboratory. The main objectives of the present work are to record the variation of the relative impact each one of the above mentioned parameters has on performance and exhaust emissions and also to reveal the advantages and disadvantages each one of the proposed method. It becomes more necessary at high engine load conditions where the simultaneous increase of the specific engine parameters may lead to undesirable results with nitric oxide emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号