首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.  相似文献   

2.
The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals.  相似文献   

3.
The AZ31B magnesium alloy sheet added with 0.5 wt.% Ce was welded with friction stir welding(FSW).The microstructures and mechanical properties of the welded joint were investigated.The results showed that the microstructures in the weld nugget zone were uniform and with small equiaxed grains.The grains in the heat-affected zone and the thermo-mechanical affected zone were coarser than those in the base metal zone and the weld nugget zone.The ultimate tensile strength of AZ31B magnesium alloy added with 0.5...  相似文献   

4.
Gas-tungsten-arc-welded (GTAW) Al0.5CoCrFeNi high-entropy alloy (HEA) was analyzed using scanning electron microscopy (SEM), microhardness, and tensile testing. The weld metal having refined equiaxed and elongated columnar dendritic microstructure experienced 6.38 pct reduction in strength and marginally reduced hardness compared to the base metal (BM). Lower work hardening with enhanced relative slip distance, which was observed through the Kocks–Mecking plot and slip distance–true strain plots, was attributed to the reduced bcc fraction in the weld.  相似文献   

5.
The effect of the conditions of friction stir welding (FSW) of 1570C aluminum alloy sheets on the structure and mechanical properties of the welded joints is studied. A recrystallized fine-grained structure with a grain size changing with the rate of welding tool rotation forms in a weld during FSW. As compared to the base metal, the yield strength of the weld metal decreases by 9–22% depending on the rate of welding tool rotation, and the ultimate tensile strength is almost independent of the FSW conditions and accounts for ~90% of the ultimate tensile strength of the base metal. The plasticity of the weld metal is >13% for all rates of welding tool rotation. The microstructure and mechanical properties of the weld zone are discussed.  相似文献   

6.
As a new type of high manganese steel, the twinning induced plasticity (TWIP) steels have attracted a growing interest in the automotive industry due to their good performance. Thin plates of TWIP steel were welded by laser beam welding (LBW) and gas tungsten arc welding (GTAW). The microstructure result shows that GTAW joint has obvious heat-affected zone (HAZ), while the HAZ of LBW joint is almost invisible. The X-ray diffraction result shows that the phase compositions of both joints are austenitic and no phase transition occurs. Energy disper- sive spectrometry result shows that there is violent evaporation of Mn element in LBW joint, while the proportion of Mn element in GTAW joint is almost unchanged. Tensile tests and micro-hardness measurements were performed to take into account the mechanical properties of joints manufactured by the two different processes. The micro-hard- ness profiles of both joints present a typical saddle distribution, and the hardness of GTAW seam is lower than that of LBW seam. The failure positions of LBW joints are all located in base metal while the GTAW joints are all at the weld toe due to the softening of HAZ. By means of scanning electron microscopy, a typical ductile fracture is observed in LBW joint, while a brittle fracture with quasi-cleavage fracture characteristic is observed in GTAW joint.  相似文献   

7.
采用光纤激光焊接设备对1800 MPa级热成形钢与CR340LA低合金高强钢进行对接激光拼焊,研究了不同激光焊接功率和焊接速度下焊接接头的组织演变规律及热冲压成形性能,并对焊接接头的力学性能和硬度进行了分析。结果表明,3种焊接工艺下激光拼焊原板综合力学性能相差较小,由焊接接头造成的伸长率和抗拉强度的损失均在母材的28.3%和9.1%以内。激光焊接后焊缝区均为粗大、高硬度的马氏体结构;两侧热影响区组织主要为铁素体和马氏体,接头未出现明显的软化区。激光拼焊原板拉伸试样均断裂于CR340LA母材区,距离焊缝12 mm左右,且存在焊缝隆起现象。选取焊接功率和焊接速率分别为4000 W和0.18 m·s?1的焊接试样在高温下进行热冲压成形检测,未出现焊缝开裂,热成形后拼焊板具有良好性能,满足汽车激光拼焊板使用要求,拉伸结果表明,试样断裂位置与未热冲压成形前一致,均位于CR340LA母材区,拉伸过程中,焊缝向高强度母材侧偏移,在弱强度母材侧产生应力集中并缩颈断裂。   相似文献   

8.
利用光学显微镜、透射电子显微镜、显微硬度计和万能拉伸试验机等分析手段,表征了Al?Zn?Mg?Cu?Zr?(Sc)合金搅拌摩擦焊(FSW)接头的显微组织和性能,探究了Sc元素对改善超高强Al?Zn?Mg?Cu?Zr合金焊接性能的作用机制。结果表明:Al?Zn?Mg?Cu?Zr?(Sc)合金焊接接头具有相似的组织特征,焊核区为动态再结晶组织,由细小均匀的等轴晶组成,包含较高密度的位错线,大部分时效析出相回溶;热力影响区晶粒被拉长,位错密度更高,残留的时效析出相显著粗化;热影响区保留与母材相同的晶粒形态,大部分时效析出的η'相发生长大,少部分粗化成η相。添加质量分数0.17%的Sc,可以使合金FSW接头抗拉强度提升43 MPa,屈服强度提升23 MPa,断后伸长率改善2.3%,焊接系数达到74.1%。Al3(Sc,Zr)二次析出相可以强烈抑制位错、亚晶界、晶界的移动,细化晶粒的同时保留大量的亚结构,且自身可发挥Orowan弥散强化作用。因此,可通过细晶强化、亚结构强化和弥散强化三种方式显著提高合金FSW接头的力学性能。   相似文献   

9.
The present work describes the effect of welding parameters on the tensile properties and fatigue behaviour of 2014-T6 aluminum alloy joints produced by friction stir welding (FSW). Characterization of the samples has been carried out by means of microstructure, microhardness, tensile properties and fatigue behaviors. The hardness in the softened weld region decreases with decreasing the welding speed. Irrespective of the tool rotation speeds, the best tensile and fatigue properties were obtained in the joints with the welding speed of 80 mm/min. The joint welded with a rotating speed of 1520 rpm at 80 mm/min has given a highest tensile and fatigue properties. The fatigue behaviors of the joints are almost consistent with the tensile properties, especially elongations. Higher ductility in FSW joints made the material less sensitive to fatigue. The location of tensile fractures of the joints is dependent on the welding parameters. On the other hand, the fatigue fracture locations change depending on the welding parameters and stress range. In addition, a considerable correlation could not be established in between heat indexes and mechanical properties of FSW 2014-T6 joints under the investigated welding parameters.  相似文献   

10.
采用ER2209焊丝对双相不锈钢SAF2205与微合金管线钢X65进行熔化极气体保护焊接,获得了具有良好力学性能的异种钢焊接接头.焊接接头不同区域显微组织观察和成分分析表明,微合金钢与不锈钢焊缝间存在异金属熔合区和第二类边界线,熔合区存在Ni、Cr的浓度梯度分布,且硬度高于两侧的焊缝和母材.通过宏观拉伸、缺口拉伸和低温冲击实验测试了焊接接头的力学性能,并获得了接头不同部位在1mol·L-1 NaCl溶液中的极化曲线.拉伸试样断裂发生于强度相对较低的微合金钢母材.焊缝金属的缺口拉伸强度和冲击韧性均略低于双相不锈钢母材,但腐蚀电位略高于母材.微合金钢热影响区与母材力学性能相当,腐蚀电位略高于母材.  相似文献   

11.
Formability and strength of friction-stir-welded aluminum sheets   总被引:4,自引:0,他引:4  
Friction stir welding was investigated as a viable process for joining thin aluminum sheets in order to manufacture tailored blanks. In the present study three alloys were tested: 5182-O, 5754-O, and 6022-T4. All three of these alloys are being used to fabricate stamped automotive parts. The gas tungsten arc welding process has been used to make aluminum-tailored welded blanks industrially, so results using this process were compared to FSW results. Blanks of the same gage of all three alloys were welded and then evaluated using tensile and formability testing. The 5xxx series alloys had similar tensile ductility and formability regardless of the welding process. However, the 6022-T4 sheets joined using friction stir welding had better formability than those joined using gas tungsten arc welding because friction stir welding caused less softening in the heat-affected zone.  相似文献   

12.
In this article, Welding of AA2219 aluminium alloy using Gas tungsten arc welding process (GTAW) and evaluation of metallurgical, mechanical and corrosion properties of the joints are discussed. The weld samples were subjected to ageing process at the temperature range of 195°C for a period of 5 h to improve the properties. AA2219 aluminium plates of thickness of 25 mm were welded using gas tungsten arc welding (GTAW) process in double V butt joint configuration. The input parameters considered in this work are welding current, voltage and welding speed. Tensile strength and hardness were measured as performance characteristics. The variation in the properties were justified with the help of microstructures. The same procedures were repeated for post weld heat treated samples and a comparison was made between as weld condition and age treated conditions. The post weld heat samples had better tensile strength and hardness values on comparing with the as weld samples. Fracture surface obtained from the tensile tested specimen revealed ductile mode of failure.  相似文献   

13.
The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.  相似文献   

14.
The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.  相似文献   

15.
In this study, the effects of heat input variation in gas tungsten arc welding (GTAW), on structure and mechanical properties of commercially C86300 (containing addition of 0.6 wt% silicon) weld joint were investigated. Following microstructural characterization of Base metal, GTAW has been performed at welding currents 50 and 60 A and flow rates of argon shielding gas (10, 14 and 18 l/min) using the same filler metal composition. Therefore six GTAW samples were performed with various welding specifications. By structural investigations and hardness profiles, effects of increasing heat input on increasing average grain size in weld zone, heat affected zone width, penetration depth and alloying element losses were indicated. However increasing heat input increases penetration depth and has a positive effect on hardness and strength of the joint. In considering wear application of this alloy castings and probable GTAW for them, pin-on-disc wear test was performed and revealed better wear resistance of weld metal in comparison with base metal. Hence the optimum values of welding current and argon flow rates (in GTAW with the same composition filler) was determined for this alloy.  相似文献   

16.

In the present investigation, P92 steel weld joints were prepared using a shielded metal arc welding (SMAW) process for two different fillers, E911 and P92. A comparative study was performed on the microstructural evolution, tensile strength, microhardness, and Charpy toughness across the P92 steel weldments in the as-welded and post-weld heat-treated (PWHT) conditions. The PWHT was performed at 760 °C for 2 hours. To study the effect of the different filler metals and PWHT on the mechanical properties, longitudinal and transverse tensile tests were carried out at room temperature for a constant cross-head speed of 1 mm/min. In the longitudinal direction, the tensile strength of the P92 steel welds was measured as 958 ± 35 and 1359 ± 38 MPa for the E911 and P92 filler, respectively. In the as-welded condition, the transverse tensile specimens were fractured from the fine-grained heat-affected zone or inter-critical heat-affected zone (FGHAZ/ICHAZ) and, after PWHT, the fracture location was shifted to over-tempered base metal from the FGHAZ/ICHAZ. After the PWHT, the tempering reaction resulted in lowering of the hardness throughout the weldment. After PWHT, the Charpy toughness of the weld fusion zone and heat-affected zone (HAZ) of the E911 filler weldments was measured as 66 ± 5 and 142 ± 8 J, respectively. The minimum required Charpy toughness of 47 J (EN1557: 1997) was achieved after the PWHT for both E911 and P92 filler.

  相似文献   

17.
Surface fusions were performed by the gas tungsten arc welding (GTAW) surfacing process on plate castings of spheroidal graphite cast iron with a travel speed from 200 to 800 mm/min. Their geometry and hardness were measured. Calorimetric measurements of the net heat input for the GTAW process have been conducted. A stepwise regression method was used to develop the relationship between GTAW process parameters and those of fusion geometry, microhardness, arc efficiency, and melting efficiency for the obtained data set.  相似文献   

18.
Friction Stir (FS) welding promises joints with low porosity, fine microstructures, and low vaporization of volatile elements compared with conventional welding techniques. FS weld was carried out on Vacuum Induction Melted 5?mm thick cast Aluminum?CMagnesium?CScandium (Al?CMg?CSc) alloy plates. Microstructural evaluation revealed that due to FS welding, fine and fragmented dynamically recrystallized grains have been formed in the weld nugget. Tensile fracture occurred out side the weld zone. The tensile strength of the welded joint is more than the cast base metal. The hardness of the FS welded joint is less than the hardness of the cast base metal. The minimum hardness was located on the retreating side of the weld. These results clearly show that FSW process is amenable to join cast Al?CMg?CSc alloy.  相似文献   

19.
This research article examines the metallurgical and mechanical behavior of twenty-first-century nickel-based superalloy 686. The weld joints were produced with ERNiCrMo-4 and ERNiCrMo-14 filler wires by continuous current gas tungsten arc welding (GTAW) and pulsed current gas tungsten arc welding (PCGTAW) mode. Optical and scanning electron microscope (SEM) analyses were performed to evaluate the microstructure of welded joints. PCGTAW weldments showed refined microstructure, narrower weld bead and minimum heat-affected zone compared to GTAW. SEM analysis revealed the presence of secondary phases in the interdendritic regions of GTA and PCGTA weldments made of ERNiCrMo-4 and GTA ERNiCrMo-14 fillers. Energy-dispersive X-ray spectroscopy examination was also performed to assess the microsegregation of alloying elements in the weldments. The results proved nonexistence of microsegregation in the case of PCGTA weldments made by ERNiCrMo-14 filler. However, segregation of alloying element Mo was noticed in other weldments. Strength and toughness of the weld joints were evaluated by conducting tensile and Charpy impact tests. The refined microstructure with the absence of microsegregation obtained in the PCGTA welding made with ERNiCrMo-14 filler wire resulted in the higher strength and toughness than other weldments.  相似文献   

20.
In this research, T-joining of AA2024-T4 and commercially pure copper were performed successfully using friction stir welding. Effect of welding parameters on metallurgical and mechanical characteristics of the joints was studied. For this purpose, tensile strength, microhardness, and macro- and microstructures of the joints were investigated. Also, the fracture surfaces were examined using XRD and SEM. The best results were obtained for the 1130 rpm rotation speed (ω) and 12 mm/min travel speed (v), with the UTS of 156 MPa (~70% of Cu strength). The microhardness test showed that TMAZ and base metal of Al side had the maximum hardness amounts (148 and 155 HV, respectively). Generally, increase in the ω2/v ratio caused the nugget zone and HAZ grain size to increase. The results revealed the formation of Al2Cu and Al4Cu9 intermetallic compounds in the border zone of the joints. The fractography results showed the occurrence of cleavage fracture in all the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号