首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoceria coatings using a spray method were implemented on a 316L stainless steel (SS). Coated and uncoated coupons were exposed to dry air at 1073 K to 1273 K (800 °C to 1000 °C) for short time periods (up to 24 hours) and in situ measurements of oxidation were carried out using a highly sensitive thermogravimetric balance. From the experimental outcome, activation energies were determined in both, coated and uncoated 316 SS coupons. The estimated exhibited activation energies for oxidation in the coated and uncoated conditions were 174 and 356 kJ/mol, respectively. In addition, the developed scales were significantly different. In the coated steel, the dominant oxide was an oxide spinel (Fe, Mn)3O4 and the presence of Fe2O3 was sharply reduced, particularly at 1273 K (1000 °C). In contrast, no spinel was found in the uncoated 316L SS, and Fe2O3 was always present in the scale at all the investigated oxidation temperatures. The coated steels developed a highly adherent fine-grained scale structure. Apparently, the nanoceria particles enhanced nucleation of the newly formed scale while restricting coarsening. Coarse grain structures were found in the uncoated steels with scale growth occurring at grain ledges. Moreover, the oxidation rates for the coated 316L SS were at least an order of magnitude lower than those exhibited by the steel in the uncoated condition. The reduction in oxidation rates is attributed to a shift in the oxidation mechanism from outward cation diffusion to inward oxygen diffusion.  相似文献   

2.
In a C-Mn steel without Nb, the mechanism of hot ductility loss and recovery has been understood. The specimens were solution treated at 1673 K (1400 °C), subsequently cooled to 1273 K (1000 °C) at a rate of 1 or 20 K/s and finally held at the temperature. At a rate of 1 K/s, the segregation concentration of sulfur at prior austenite grain boundaries decreases gradually with holding time. At the rate of 20 K/s, the segregation concentration of sulfur shows a convex profile in a time versus segregation concentration plot. Such segregation behaviors of sulfur are deeply related to the MnS reaction during cooling to 1273 K (1000 °C) or holding at the temperature. The high-temperature intergranular fracture observed in this steel is due to the sulfur segregated at the grain boundaries. The recovery of hot ductility results from the combination between the decrease in sulfur segregation concentration governed by the MnS reaction and the overall decohesion at the interface of the MnS particles which act as a strong sink of the free sulfur tending to segregate to the grain boundaries.  相似文献   

3.
Nb-20Mo-15Si-25Cr (25Cr alloy) and Nb-20Mo-15Si-25Cr-5B (25Cr/5B alloy) alloys have been subjected to oxidation in air for 24 hours from 973 K to 1673 K (700 °C to 1400 °C). Even though B additions do not improve oxidation resistance at temperatures higher than 1473 K (1200 °C), the lower temperature oxidation resistance is superior with B by influencing the microstructure. Porous oxide scale development at lower temperatures has been attributed to the dominant growth of Nb2O5 and the vaporization of MoO3. An intermediate oxidation layer is developed between the scale and the metal for the 25Cr/5B alloy at temperatures above 1173 K (900 °C). Scale densification at elevated temperatures results in higher stress development as a result of the mismatch of coefficients of thermal expansion, ultimately resulting in oxide spallation.  相似文献   

4.
High temperature oxidation of alumina-forming MAX phases, Ti2AlC and Cr2AlC, were examined under turbine engine environments and coating configurations. Thermogravimetric furnace tests of Ti2AlC showed a rapid initial transient due to non-protective TiO2 growth. Subsequent well-behaved cubic kinetics for alumina scale growth were shown from 1273 K to 1673 K (1000 °C to 1400 °C). These possessed an activation energy of 335 kJ/mol, consistent with estimates of grain boundary diffusivity of oxygen (~375 kJ/mol). The durability of Ti2AlC under combustion conditions was demonstrated by high pressure burner rig testing at 1373 K to 1573 K (1100 °C to 1300 °C). Here good stability and cubic kinetics also applied, but produced lower weight gains due to volatile TiO(OH)2 formation in water vapor combustion gas. Excellent thermal stability was also shown for yttria-stabilized zirconia thermal barrier coatings deposited on Ti2AlC substrates in 2500-hour furnace tests at 1373 K to 1573 K (1100 °C to 1300 °C). These sustained a record 35 µm of scale as compared to 7 μm observed at failure for typical superalloy systems. In contrast, scale and TBC spallation became prevalent on Cr2AlC substrates above 1423 K (1150 °C). Cr2AlC diffusion couples with superalloys exhibited good long-term mechanical/oxidative stability at 1073 K (800 °C), as would be needed for corrosion-resistant coatings. However, diffusion zones containing a NiAl-Cr7C3 matrix with MC and M3B2 particulates were commonly formed and became extensive at 1423 K (1150 °C).  相似文献   

5.
Multiphase alloys in the Mo-Si-B system are potential high-temperature structural materials due to their good oxidation and creep resistance. Since they suffer from relatively high densities, the current study focuses on the influence of density-reducing Ti additions on creep and oxidation behavior at temperatures above 1273 K (1000 °C). Two alloys with compositions of Mo-12.5Si-8.5B-27.5Ti and Mo-9Si-8B-29Ti (in at. pct) were synthesized by arc melting and then homogenized by annealing in vacuum for 150 hours at 1873 K (1600 °C). Both alloys show similar creep behavior at stresses of 100 to 300 MPa and temperatures of 1473 K and 1573 K (1200 °C and 1300 °C), although they possess different intermetallic volume fractions. They exhibit superior creep resistance and lower density than a state-of-the-art Ni-base superalloy (single-crystalline CMSX-4) as well as other Mo-Si-B alloys. Solid solution strengthening due to Ti was confirmed by Vickers hardness measurements and is believed to be the reason for the significant increase in creep resistance compared to Mo-Si-B alloys without Ti, but with comparable microstructural length scales. The addition of Ti degrades oxidation resistance relative to a Mo-9Si-8B reference alloy due to the formation of a relatively porous duplex layer with titania matrix enabling easy inward diffusion of oxygen.  相似文献   

6.
Because of the effect of silicon on the formation of oxide scale, red scale is the main surface defect of hot-rolled Fe-Si plate, making the scale difficult for descaling compared with carbon steel. Thermogravimetric analyzer (TGA) is used to simulate isothermal oxidation process of Fe-1.5Si alloy for 60 min under air condition, and the temperature range is from 700 to 1200 °C. Electron probe microanalysis (EPMA) is used to observe cross-sectional scale morphology and analyze elemental distribution of the scale. Relational graph of temperature, scale thickness and scale structure is obtained. It is found that scale structure (outer Fe oxide layer+inner FeO/Fe2SiO4 layer+internal Si oxide precipitates) is almost unchanged with temperature except at 1000 and 1200 °C. At 1000 °C internal Si oxide precipitates cannot be found at the subsurface of the alloy, and at 1200 °C FeO/Fe2 SiO4 not only forms a layer as usual but also penetrates into the outer Fe oxide layer deeply.  相似文献   

7.
Aluminum (Al)-V master alloys have attracted attention, because they can potentially be efficient grain refiners for wrought aluminum alloys. In this paper, the microstructure and factors affecting the microstructure of Al-4 wt pct V master alloys were investigated by means of controlled melting and casting processes followed by structure examination. The results showed that the type and morphology of the V-containing phases in Al-V master alloys were strongly affected by the temperature of the melt, concentration of vanadium in solution in the melt and the cooling conditions. Two main V-containing phases, Al3V and Al10V, which have different shapes, were found in the alloys prepared by rapid solidification. The Al3V phase formed when there were both a high temperature (1273 K to 1673 K (1000 °C to 1400 °C)) and a relatively high vanadium content of 3 to 4 wt pct, while the Al10V phase formed at a low temperature (<1373 K (1100 °C)) or a low vanadium content in the range of 1 to 3 wt pct. The results also showed that the type of V-containing phase that formed in the Al-4 wt pct V master alloy was determined by the instantaneous vanadium content.  相似文献   

8.
In the current work, silicide coatings were produced on the Nb alloy (Nb-1 pct Zr-0.1 pct C) using the halide activated pack cementation (HAPC) technique. Coating parameters (temperature and time) were optimized to produce a two-layer (Nb5Si3 and NbSi2) coating on the Nb alloy. Subsequently, the oxidation behavior of the Nb alloy (Nb-1 pct Zr-0.1 pct C) and silicide-coated Nb alloy was studied using thermogravimetric analysis (TGA) and isothermal weight gain oxidation experiments. Phase identification and morphological examinations were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TGA showed that the Nb alloy started undergoing accelerated oxidation at and above 773 K (500 °C). Isothermal weight gain experiments carried out on the Nb alloy under air environment at 873 K (600 °C) up to a time period of 16 hours exhibited a linear growth rate law of oxidation. In the case of silicide-based coatings, TGA showed that oxidation resistance of silicide coatings was retained up to 1473 K (1200 °C). Isothermal weight gain experiments on the silicide coatings carried out at 1273 K (1000 °C) in air showed that initially up to 8 hours, the weight of the sample increased, and beyond 8 hours the weight of the sample remained constant. The oxide phases formed on the bare samples and on the coated samples during oxidation were found to be Nb2O5 and a mixture of SiO2 and Nb2O5 phases, respectively. SEM showed the formation of nonprotective oxide layer on the bare Nb alloy and a protective (adherent, nonporous) oxide layer on silicide-coated samples. The formation of protective SiO2 layer on the silicide-coated samples greatly improved the oxidation resistance at higher temperatures.  相似文献   

9.
Hot deformation behavior of IN-939 superalloy was investigated in this work. Hot compression experiments were performed at temperatures of 1273 K, 1323 K, 1373 K, and 1423 K (1000 °C, 1050 °C, 1100 °C, and 1150 °C) at strain rates of 0.001, 0.01, 0.1, and 1 s?1 up to a true strain of 0.8. Then variations in stress-strain curves as well as changes in microstructures of various hot-deformed samples were studied. At 1273 K to 1323 K (1000 °C to 1050 °C), dynamic recovery (DRV), and at 1373 K to 1423 K (1100 °C to 1150 °C), dynamic recrystallization (DRX), were recognized to be the main mechanisms of the alloy softening during hot compression tests. The relationships between flow stress, strain rate, and temperature were mathematically modeled with three well-known equations, and on the basis of those equations, the activation energy of hot deformation was calculated. For improvement of the proposed models, it was necessary to conduct the investigation at two temperature ranges: 1373 K to 1423 K (1100 °C to 1150 °C), in which DRX occurred, and 1273 K to 1323 K (1000 °C to 1050 °C), where DRV as well as γ′ precipitation happened. For each of the temperature ranges, a different value for activation energy was obtained, which in conjunction with the related model, can be used for simulating the deformation behavior of the alloy.  相似文献   

10.
The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.  相似文献   

11.
ABSTRACT

Alloys with composition of Ta-10?wt.% W and Ta-10?wt.% W-6?wt.% Al, respectively, were prepared by the hot-press sintering process. The oxidation behaviour at 900°C and 1000°C was studied. The oxidation weight gain curves of the Ta–10%W alloy followed the linear law and the final oxidation product was Ta2O5 solid solution. Meanwhile, due to the addition of Al, the oxidation weight gain curves of the Ta–10%W–6%Al alloy followed the parabolic law. The final oxidation products at 900°C formed a dense outer layer Al2O3 and an inner layer. However, after being oxidised at 1000°C, the oxidation products included Al2O3, AlTaO4 and Ta22W4O67. Since the dense Al2O3 oxide film was consumed by the generation of AlTaO4, the inward diffusion of oxygen cannot be prevented. The oxidation resistance degraded at 1000°C. The addition of Al significantly improved the oxidation resistance of the Ta-W-based alloy system.  相似文献   

12.
Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent γ′ precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of γ′ precipitates, respectively. The γ′ precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for γ′ precipitate dislocation bypass, suggests that the climb of dislocations around the γ′ precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the γ′ precipitates.  相似文献   

13.
Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-“CuO0.5”-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.  相似文献   

14.
The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10−8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.  相似文献   

15.
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning’s formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.  相似文献   

16.
Alkmin  L. B.  Chaia  N.  Utada  S.  Cormier  J.  Baldan  R.  Coelho  G.  Nunes  C. A. 《Metallurgical and Materials Transactions A》2021,52(6):2589-2600

The present investigations focused on the thermal oxidation of two variants of MAR-M246 alloy having the same contents of Ta and Nb in at. pct, considering the effects of total replacement of Ta by Nb. The alloys were produced by investment casting using high purity elements in induction furnace under vacuum atmosphere. The alloys were oxidized pseudo-isothermally at 800 °C, 900 °C and 1000 °C up to 1000 hours under lab air. Protective oxidation products growing on the surface of the oxidized samples were mainly Al2O3, Cr2O3. Other less protective oxide such as spinels (NiCr2O4 and CoCr2O4) and TiO2 were also detected as oxidation products. The conventional alloy exhibited slight internal oxidation at 800 °C and an enhanced resistance at 900 °C and 1000 °C. The Nb-modified alloy presented an exacerbated internal oxidation and nitridation at 900 °C and 1000 °C and an enhanced resistance at 800 °C. At 1000 °C, Nb-modified alloy was particularly affected by excessive spalling as the main damage mechanisms. From a kinetic point of view, both alloys exhibit the same behavior at 800 °C and 900 °C, with kp values typical of alumina forming alloys (2 × 10−14 to 3.6 × 10−13 g2 cm−4 s−1). However, Ta modified alloys exhibited superior oxidation resistance at 1000 °C when compared to the Nb modified alloy due to better adherence of the protective oxide scale.

  相似文献   

17.
The present work investigates the formation of manganese ferrite of nanosize by oxidation of MnO- and FeO-containing slag. A horizontal resistance furnace was used as an experimental setup. The experiment was conducted in the temperature range of 1573 K to 1673 K (1300 °C to 1400 °C) in an oxidizing atmosphere. The samples were quenched to the cold end of the furnace and were analyzed by X-ray diffraction (XRD). The XRD patterns of the products showed the presence of two phases??manganese ferrite and calcium silicate. The particle size of the manganese ferrite was estimated by the Scherrer formula to be in the range of nanometers.  相似文献   

18.
Deformation behavior of hot-rolled AISI 304 LN austenitic stainless steel was studied by hot axisymmetric compression tests at 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C) at strain rates of 0.01, 0.1, and 1 s?1. The flow curves were examined to understand the deformation characteristics. The influence of Zener–Holloman parameter was analyzed using appropriate constitutive models. The activation energy for deformation was found to be 473 kJ/mol. Quantitative microstructural analysis was carried out using Electron backscattered diffraction. Compression at 1173 K (900 °C) at all true strain rates gave rise to partially dynamic recrystallized microstructure with strong α-fiber texture. The deformation texture is characterized by the formation of Brass component, and partial dynamic recrystallization (DRX) led to the development of Goss, S, and ube components. Necklace structure of small equiaxed recrystallized grains could be observed surrounding the large, elongated deformed grains. Compressions at 1273 K and 1373 K (1000 °C and 1100 °C) resulted in fully recrystallized microstructure consisting of mostly Σ3 and Σ9 coincidence site lattice high-angle boundaries. Compression at 1273 K (1000 °C) leads to the formation of low-intensity diffused α-fiber. DRX was confirmed by the presence of Goss, S, Cube, and rotated Cube components. Compression performed at 1373 K (1100 °C) resulted in nearly random texture with traces of α-fiber and prominent Cube/rotated Cube components. The microstructures of the 1173 K (900 °C)-compressed samples were partitioned using grain size and misorientation criteria to quantify DRX.  相似文献   

19.
Heat treatment of Type 304 stainless steel in the range of 1273 K (1000 °C) to 1473 K (1200 °C) can transform manganese silicate inclusions to manganese chromite (spinel) inclusions. During heat treatment, Cr reacts with manganese silicate to form spinel. The transformation rate of inclusions depends strongly on both temperature [in the range of 1273 K to 1473 K (1000 °C to 1200 °C)] and inclusion size. A kinetic model, developed using FactSage macros, showed that these effects agree quantitatively with diffusion-controlled transformation. A simplified analytical model, which can be used for rapid calculations, predicts similar transformation kinetics, in agreement with the experimental observations.  相似文献   

20.
Nb-25Cr-20Mo-15Si-10B (compositions in at pct) and Nb-25Cr-20Mo-15Si-15B alloys were exposed to air for a maximum period of 2 weeks under static and cyclic conditions to determine oxidation response. Oxidation was carried out at temperatures of 973 K, 1173 K, 1373 K, and 1573 K (700 °C, 900 °C, 1100 °C, and 1300 °C). Results of long-term cyclic oxidation show an increase in oxidation resistance with an increase in boron content. Pesting has been observed at 973 K (700 °C) in the 10B alloy in cyclic and static modes of oxidation. Comparative analysis of oxide formation is done by the weight gain per unit surface area method. The alloys and their oxides are characterized by X-ray diffraction, scanning electron microscopy, and X-ray mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号