首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of different solvents and metal ions (Li+, Ba2+, Bi3+) on the crystallization behaviour, morphology and enhancement in photoluminescence intensity of Dy3+ doped CePO4 were investigated. Highly crystalline luminescent nanophosphors of CePO4:Dy3+ re-dispersible in polar solvents were successfully prepared via a simple polyol route at 140 ℃. As-prepared Dy3+ doped CePO4 nanophos-phors prepared in EG and DMF appeared to have crystalline monoclinic phase but exhibited hexagonal phase when prepared in water and water mixed solvents. The hexagonal phase transformed to monoclinic phase after heating at 900 ℃. TEM study revealed different shapes of the synthesized nanophosphors with change of solvents. The luminescence intensity of 4F9/2→6H15/2 at 478 nm (blue) was found to be more prominent than 4F9/2→6H13/2 at 572 nm (yellow). The introduction of metal ions (Li+, Ba2+ and Bi3+) in CePO4:Dy3+ led to considerable lumi-nescent enhancement. The nanophosphors were subsequently incorporated in polymer films of PVA which showed the characteristic emissions of Dy3+. It also served as an effective method to improve the performance of polymer materials and brought about novel properties in them.  相似文献   

2.
The effects of the addition of alcohol and cetyltrimethylammonium bromide (CTAB) on the crystallization and the morphology of hydroxyapatite (HA) powders synthesized by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD) in the 2.5 M NaOH solutions at 348 K (75 °C) for 1 hour have been studied. The values of zeta potential have large differences between the sums of DCPD with CTAB (Z DCPD+CTAB) minus the sum of DCPD and CTAB (Z DCPD + Z CTAB), and of HA with CTAB (Z HA+CTAB) minus the sum of HA and CTAB (Z HA + Z CTAB), respectively. When the hydrolysis of DCPD occurred in the 2.5 M NaOH solutions at 348 K (75 °C) for 1 hour both with and without alcohol and CTAB, XRD results show the only one phase of HA in the as-dried powders. When the NaOH solution does not contain CTAB, the crystallite size of HA powders decreased from 23 ± 1 to 16 ± 1 nm as the alcohol content was more than 50 pct. The crystallite size of HA powders obtained from DCPD synthesized in the 2.5 M NaOH solution with 1.0 × 10?3 M CTAB decreased when the alcohol content was increased to 70 pct, whereas the crystallite size increased when the alcohol concentration was greater than that of 70 pct. SEM images show that the HA powders have a rod-like shape when DCPD was synthesized in the 2.5 M NaOH solution without CTAB or alcohol. When the NaOH solution had 1.0 × 10?3 M CTAB and various alcohol concentrations, the morphology of HA powder still maintained a rod-like or needle-like shape. The HA powder had a maximum specific surface area of 180.25 m2/g when the hydrolysis of DCPD occurred in a 2.5 M NaOH solution containing 1.0 × 10?3 M CTAB and 70 pct alcohol at 348 K (75 °C) for 1 hour.  相似文献   

3.
A flower-like Eu2+ and Dy3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 °C and to be single-phase SrAl2O4 at 1100 °C. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about 1-2 μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.  相似文献   

4.
Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.  相似文献   

5.
Ceria nano discs were synthesized by the stepwise thermal decomposition strategy of the oxalate precursor. A series of Ce1–xCuxO2 (x = 0, 0.02, 0.1, 0.2 and 0.3) nano sized oxide systems were prepared through thermal decomposition route. Kinetic characterization of formation of solid solution was made by isoconversional strategy under non-isothermal condition. Introduction of various reactant molar ratios of Cu2+:Ce4+ has a pivotal role in the creation of new oxygen vacancies, decomposition strategy, particle size and shape. Cu2+ doping (x = 0.02 and 0.1) damages the disc shaped morphology of ceria. Homogeneous distribution of Cu2+ on the oxalate precursor has a significant role in the catalyzing activity for the destruction of oxalate bond to oxide. 2 mol% doped Cu2+ promotes breaking of oxalate bonds in nitrogen atmosphere. In vitro cell viability assay illustrates enhanced toxicity to cancer cells with 10 mol% Cu2+ doped ceria.  相似文献   

6.
The iron oxide (Fe3O4) magnetic nanoparticles were synthesized via the organic solution phase method and used for the fabrication of the Au/Fe3O4/p-Si rectifying device. The variation in electrical characteristics of the Au/Fe3O4/p-Si Schottky contacts was investigated as a function of temperature using current–voltage (IV) measurements in the temperature range of 40 K to 370 K (?233 °C to 97 °C). The IV characteristics of the contacts indicated extremely strong temperature dependence. The double distribution of barrier heights was found in the Fe3O4/p-Si Schottky diodes from the IV-T measurements. The Schottky barrier height (Φb) increases with the increasing temperature, while the ideality factor n decreases. The nonlinearity in the activation energy plot was observed, which is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the Fe3O4/p-Si interface. The Richardson constant measured from the temperature-dependent IV characteristics is 2.99 A/K2 cm2, which is lower than the ideal value.  相似文献   

7.
The effects of process parameters on the crystallization and morphology of hydroxyapatite (Ca10(PO4)6(OH)2, HA) powders synthesized from dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) using a hydrolysis method have been investigated. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were used to characterize the synthesized powders. When DCPD underwent hydrolysis in 2.5 NaOH solution (Na(aq)) at 303 K to 348 K (30 °C to 75 °C) for 1 hour, the XRD results revealed that HA was obtained for all the as-dried samples. The SEM morphology of the HA powders for DCPD hydrolysis produced at 348 K (75 °C) shows regular alignment and a short rod shape with a size of 200 nm in length and 50 nm in width. With DCPD hydrolysis in 2.5 M NaOH(aq) holding at 348 K (75 °C) for 1 to 24 hours, XRD results demonstrated that all samples were HA and no other phases could be detected. Moreover, the XRD results also show that all the as-dried powders still maintained the HA structure when DCPD underwent hydrolysis in 0.1 to 5 M NaOH(aq) at 348 K (75 °C) for 1 hour. Otherwise, the full transformation from HA to octa-calcium phosphate (OCP, Ca8H2(PO4)6·5H2O) occurred when hydrolysis happened in 10 M NaOH(aq). FT-IR spectra analysis revealed that some carbonated HA (Ca10(PO4)6(CO3), CHA) had formed. The SEM morphology results show that the 60 to 65 nm width of the uniformly long rods with regular alignment formed in the HA powder aggregates when DCPD underwent hydrolysis in 2.5 M NaOH(aq) at 348 K (75 °C) for 1 hour.  相似文献   

8.
In this paper, the effect of reactive hot press sintering (RHPS) parameters, such as milling time, hot pressing temperature, and heat treatment, on phase constitution, microstructure, and room temperature mechanical properties of a multicomponent Nb-16Si-22Ti-2Hf-2Al-2Cr alloy prepared from ball milled powder mixture is investigated. Evaluation of the microstructure revealed that all as-sintered and heat-treated samples mainly consisted of particles of Nb and Ti solid solutions (NbSS and TiSS), as well as a niobium silicide β-Nb5Si3 matrix, with a small quantity of Hf solid solution particles (HfSS). By sintering at 1773 K and 1873 K (1500 °C and 1600 °C), most of the NbSS phase in the samples prepared from 5 and 10 ball milled powder mixtures showed a narrow strip morphology. Upon increasing the milling time to 20 hours, the morphology changed to a near-equiaxed shape, which became finer with increased milling time. In contrast, the TiSS phase in all as-sintered samples more or less had a near-equiaxed shape. Spheroidizing tendency took place in both NbSS and TiSS phases during an annealing heat treatment at 1773 K (1500 °C) for 50 hours. Interestingly, when the milling time was extended from 5 to 20 hours, the volume fractions of the β-Nb5Si3 and TiSS phases increased, whereas that of the NbSS phase decreased. This resulted in the reduction of the fracture toughness K Q and an enhancement of the Vickers hardness Hv of the bulk as-sintered and heat-treated samples. A fractography analysis was also carried out to elucidate the fracture behavior of phases, with particular emphasis on the interaction between phases and cracks.  相似文献   

9.
Pd/CeO2 catalysts with flower-like morphology were fabricated via an ultrasonic-assisted membrane reduction (UAMR) and hydrothermal methods. The catalysts were physically characterized and evaluated fo...  相似文献   

10.
Graphite screen printed electrode modified with Gd_2 O_3 nanoparticles(Gd_2 O_3/SPE) was developed for the determination of venlafaxine(VF). The Gd_2 O_3 nanoparticles were thoroughly characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses. To study the electrochemical behaviour of venlafaxine cyclic voltammetry(CV), chronoamperometry(CHA)and differential pulse voltammetry(DPV) were employed. These studies reveal that the oxidation of venlafaxine is facilitated at Gd_2 O_3/SPE. After optimization of analytical conditions, analysis of venlafaxine using the modified electrode in 0.1 mol/L PBS(pH 7.0) demonstrates that the peak currents corresponding to venlafaxine vary linearly with its concentration in the range of 5.0 ×10~(-6)-9.0 × 10~(-4) mol/L. The detection limit(S/N = 3) of 2.1 × 10~(-7) mol/L is obtained for venlafaxine using DPV. The prepared modified electrode benefits from advantages such as simple preparation method, high sensitivity and low detection limit.Moreover, the evaluation of practical applicability of this proposed method is successful in the identification of venlafaxine in pharmaceutical formulations, urine and water samples.  相似文献   

11.
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (?60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 (x > 1.5) and Si-rich xMnO·SiO2 (x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.  相似文献   

12.
Nanocrystalline SmFe_(8.95-x)Ga_(0.26)Nb_xN_δ(x=0, 0.1, 0.2, 0.3) were prepared using rapid-quenching,annealing and nitriding. The magnetic properties and crystal structures were systematically studied under various wheel velocities to investigate the influence of Nb doping for the compounds. It is found that TbCu7-type structure is able to be obtained even though the wheel velocity is reduced to 20 m/s(x = 0.3). An significant increase(△T_c=70 ℃) of the Curie temperature is obtained with Nb doping at x = 0.1 due to the lattice expansion revealed by Rietveld analysis. The optimum coercivity with the value H_(cj) of 810 kA/m is achieved at x = 0.2 in the nitrides, in which a reasonable distribution of grain sizes of both TbCu_7-type SmFe_9 N_δ and α-Fe can be found. However, an excess of Nb doping may lead to the increase of the weight fraction of α-Fe, which in turn deteriorates the magnetic properties.  相似文献   

13.
We report the results of magnetic, thermodynamic, transport and magnetocaloric effect (MCE) studies of newly synthesized Gd_(10)Co_(20)Si_(70) alloy. These measurements confirm an antiferromagnetic transition at T_N=9 K. Both MCE and magnetoresistance (MR) show quadratic dependence on the applied magnetic field, indicating the presence of spin fluctuations in the alloy. The maximum values of the magnetic entropy change determined from the isothermal magnetization data for magnetic field change of 7 and9 T are found to be 10.5 and 15.6 J/kg·K, respectively. As a consequence of the spin fluctuations effect, the MCE peaks are pulled towards high temperature side as asymmetrically broadened peak. The MR attains a large positive value of 73%at 2 K in 8 T. The large MR and reversible MCE make this alloy an attractive multifunctional magnetic material.  相似文献   

14.
In the current research work Ba_(1-x)La)xMn)yFe_(12-y)O_(19) hexa-ferrite nanoparticles of different compositions were synthesized using chemical co-precipitation technique. The structural properties were explored using X-ray diffractions(XRD), scanning electron microscopy(SEM) and Fourier transmission infrared spectroscopy(FTIR). XRD indexed pattern confirms the formation of M-type hexagonal phase. The crystallite size of synthesized samples ranges from 13 to 34 ± 2 nm. FTIR peaks observe also confirmed the presence of metaloxygen bond of the desired product. The position of peak at 467 cm~(-1) corresponds to A_2 u vibration for octahedral Fe(4+)-O and peak position E1 u corresponds to vibration of Fe(3+)O4 octahedral bonds. The band v_1 in range(677-559 cm~(-1)) and v_2 in frequency range(356-419 cm~(-1)) are associated to A and B sites.Dielectric properties of all compositions were measured with frequency. The dielectric constant, loss and tangent loss decrease from 26 to 9, 25 to 2 and 0.94 to 0.14, respectively with frequency. DC electrical resistivity is increased with dopant concentration increasing from 2.15 × 10~4 to 1.92 ×10~5 Ω·cm.  相似文献   

15.
SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH3-SCR activity with higher than 90% NO_x conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NO_X conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_2.The characteristic results suggest that the high deNO_X performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH3.  相似文献   

16.
The effect of temperature on stress oxidation behaviors of 2D C/SiC-BC x composites was investigated. The results indicate that the damage rate of 2D C/SiC-BC x composites increases with increasing oxidation temperature. The residual tensile strengths of 2D C/SiC-BC x composites show nonlinear change with increasing oxidation time. At 973.15 K (700 °C) and 1173.15 K (900 °C), the residual strengths of 2D C/SiC-BC x composites increase firstly and then decrease with increasing oxidation time. At 1473.15 K (1200 °C), the residual strengths are zero after stress oxidation for 9 hours. The oxidation of BC x layer aggravates, and the glass phase becomes more obvious with increasing oxidation temperature. At the same time, the oxidation damage of 2D C/SiC-BC x composites becomes more serious.  相似文献   

17.
The effects of process parameters on the microstructure, microhardness, and dry-sliding wear behavior of plasma nitrided 17-4PH stainless steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and wear testing. The results show that a wear-resistant nitrided layer was formed on the surface of direct current plasma nitrided 17-4PH martensitic stainless steel. The microstructure and thickness of the nitrided layer is dependent on the treatment temperature rather than process pressure. XRD indicated that a single α N phase was formed during nitriding at 623 K (350 °C). When the temperature increased, the α N phase disappeared and CrN transformed in the nitrided layer. The hardness measurement demonstrated that the hardness of the stainless substrate steel increased from 320 HV0.1 in the untreated condition increasing to about 1275HV0.1 after nitriding 623 K (350 °C)/600 pa/4 hours. The extremely high values of the microhardness achieved by the great misfit-induced stress fields associated with the plenty of dislocation group and stacking fault. Dry-sliding wear resistance was improved by DC plasma nitriding. The best wear-resistance performance of a nitrided sample was obtained after nitriding at 673 K (350 °C), when the single α N-phase was produced and there were no CrN precipitates in the nitrided layer.  相似文献   

18.
The high saturation induction makes Fe1?x Co x thin films desirable for use as recording head materials. In this experiment, Fe7Co3 thin films were deposited by DC cylindrical magnetron sputtering using the different position of glass substrate in argon pressure of 2 × 10?2 Torr under sputtering power of 120 W. The magnetic properties were determined by scanning probe microscopy. The surface morphology and r.m.s roughness of thin films were analyzed using atomic force microscopy and the optical properties have been analyzed by spectrophotometer. The thin film thickness, grain size and optical properties were affected by changing substrate position and we found the deposition influenced magnetic properties and surface morphology.  相似文献   

19.
The precipitate phases in an 11 pct Cr ferritic/martensitic steel normalized at 1323 K (1050 °C) for 0.5 hour and tempered at 1053 K (780 °C) for 1.5 hours have been investigated. Except for dominant phases, Cr-rich M23C6 carbide and Nb-rich, Ta-Nb-rich, and V-rich MC carbides, needle-like precipitates with a typical size of 70 to 310 and 10 to 30 nm for the length of the long and short axis of the needles, respectively, were also observed on the extraction carbon replica of the steel. The typical metallic element composition of the needle-like precipitates is about 53-82Fe, 14-26Cr, 0.5-18Ta, 1-6W, and 2-5Co in atomic pct. Through energy dispersive X-ray analysis and electron diffraction along with calculations regarding lattice parameter and interplanar spacing, the needle-like precipitates were identified as a Fe-rich M5Ccarbide, which is not known to have been reported previously in high-chromium steels. The M5Ccarbide has a base-centered monoclinic crystal structure with the approximate lattice parameters a/b/c = 1.142/0.5186/0.5383 nm and β = 104.68 deg. The formation of the Fe-rich M5C2 carbides in the steel has been discussed. The effect of chromium content in matrix and boron addition on the precipitate phases in ferritic/martensitic steels has also been discussed.  相似文献   

20.
The present work reports the synthesis, characterization, photoluminescence and photocatalytic activity of Eu~(3+)(1 mol%-11 mol%) doped and Li~+(0.5 mol%-5 mol%) co-doped Bi_2 O_3 nanophosphors(NPs) by sonochemical method. The average particle size was estimated using powder X-ray diffraction(PXRD)and transmission electron microscopy(TEM) and is found to be in the range of 30-35 nm. The scanning electron microscopy(SEM) images were highly dependent on sonication time and concentration of epigallocatechin gallate(EGCG) bio-surfactant. The energy gap of doped and co-doped Bi_2 O_3 nanophosphors was estimated using Kubelka-Munk(K-M) function and is found to be in the range of2.9-3.08 eV. The effect of Li+ co-doping on luminescence of optimized Bi_2 O_3:Eu~(3+) was studied and is found about more than 3 fold enhancement of emission intensity. Judd-Ofelt parameters(Ω_2, Ω_4 and Ω_6).transition probabilities(A_T), quantum efficiency(η), luminescence lifetime(τ_(rad)), color chromaticity coordinates(CIE) and correlated color temperature(CCT) values were estimated from the emission spectra and are discussed in detail. The estimated CIE chromaticity co-ordinates are very close to the NTSC(National Television Standard Committee) standard value of red emission. The synthesized NPs show excellent photocatalytic activity of acid red-88 under UV-light irradiation, which can degrade 98.1% in60 min. The decreasing electron-hole pair recombination rate with quick electron transfer ability is predominantly ascribed to the balance between crystallite size, morphology, band gap, defects, surface area, etc. These results show a light for the use of sonochemical route of Bi_2 O_3:Eu~(3+):Li~+ in solid state display and photocatalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号