首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments show that the magnesium AZ31 (Mg-3 pct Al-1 pct Zn) alloy exhibits excellent superplastic properties at 623 K (350 °C) after processing by equal-channel angular pressing using a die with a channel angle of 135 deg and a range of decreasing processing temperatures from 473 K to 413 K (200 °C to 140 °C). A maximum elongation to failure of ~1200 pct was achieved in this alloy at a tensile strain rate of 1.0 × 10?4 s?1. Microstructural inspection showed evidence for cavity formation and grain growth during tensile testing with the grain growth leading to significant strain hardening. An examination of the experimental data shows that grain boundary sliding is dominant during superplastic flow. Furthermore, a comprehensive review of the present results and extensive published data for the AZ31 alloy shows the exponent of the inverse grain size is given by p ≈ 2 which is consistent with grain boundary sliding as the rate-controlling flow mechanism.  相似文献   

2.
The effect of the applied stress on the deformation and crack nucleation and propagation mechanisms of a γ-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at. pct)-0.8 vol. pct TiB2) was examined by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K (700 °C) using a scanning electron microscope. Colony boundary cracking developed during the secondary stage in creep tests at 300 and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses. Colony boundary cracking was also observed in the constant strain rate tensile test. Interlamellar ledges were only found during the tensile-creep tests at high stresses (σ > 400 MPa) and during the constant strain rate tensile test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack indicated that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with stress, but this fracture mechanism was always of secondary importance. Translamellar cracking was only observed along the primary crack.  相似文献   

3.
Detailed analysis on tensile true stress (??)-true plastic strain (??) and work-hardening behavior of 9Cr-1Mo steel have been performed in the framework of the Voce relationship and Kocks-Mecking approach for wide range of temperatures, 300 K to 873 K (27 °C to 600 °C) and strain rates (6.33 × 10?5 to 6.33 × 10?3 s?1). At all test conditions, ??-?? data were adequately described by the Voce equation. 9Cr-1Mo steel exhibited two-stage work-hardening behavior characterized by a rapid decrease in instantaneous work-hardening rate (?? = d??/d??) with stress at low stresses (transient stage) followed by a gradual decrease in ?? at high stresses (stage III). The variations of work-hardening parameters and ??-?? as a function of temperature and strain rate exhibited three distinct temperature regimes. Both work-hardening parameters and ??-?? displayed signatures of dynamic strain aging at intermediate temperatures and dominance of dynamic recovery at high temperatures. Excellent correlations have been obtained between work-hardening parameters evaluated using the Voce relationship and the respective tensile properties. A comparison of work-hardening parameters obtained using the Voce equation and Kocks-Mecking approach suggested an analogy between the two for the steel.  相似文献   

4.
This article deals with the effects of theα-Al2O3 scale (∼5μm) developed during preoxidation (1100 °C/100 hours) of MA 956 on its room-temperature tensile behavior. The tensile tests were made in the strain-rate range of 10−5 to 10−1 s−1. It is shown that the scale, fine and tightly adherent to the substrate, affects the tensile behavior in two relevant ways. First, the yield strength and the tensile strength are lowered with respect to those of the scale-free material. This is explained in terms of the residual stresses generated in the scale during preoxidation. From the analysis of the differences in the yield strength of preoxidized MA 956 with respect to the scale-free material, residual compression stresses in the scale of about 5500 MPa were obtained. These high stresses account for the surprisingly high tensile strain achieved (1.4 pct) before scale spallation occurs. Second, a ductile to brittle transition (DBT), which is not observed in the scale-free samples, occurs at intermediate strain rates (10−3 s−1). The brittle fracture is related to the increase of the triaxiality state in the substrate near the scale/metal interface.  相似文献   

5.
The stress corrosion cracking (SCC) behavior of 7050-T7451 plate material was investigated in short-transverse direction performing constant load and constant extension rate tests. Smooth and notched tensile specimens were permanently immersed in substitute ocean water and in an aqueous solution of 0.6 M NaCl + 0.06 M (NH4)2SO4. Alloy 7050-T7451 exhibited high SCC resistance in both synthetic environments. However, conducting cyclic loading tests, environment-induced cracking was observed. Applying a sawtooth waveform, notched tensile specimens were strained under constant load amplitude conditions at constant displacement rates ranging from 2 × 10?6 to 2 × 10?4 mms?1. The stress ratio R = σ min/σ max was 0.1 with maximum stresses of 300 and 400 MPa. When cyclically loaded in substitute ocean water, notched specimens failed predominantly by transgranular environment-induced cracking. Striations were observed on the cleavage-like facets. The number of cycles-to-failure decreased with decreasing displacement rate. A slope of 0.5 was obtained by fitting the logarithmic plot of number of cycles-to-failure vs nominal loading frequency, indicating a hydrogen embrittlement mechanism controlled by diffusion.  相似文献   

6.
Hot compression tests were performed on a duplex stainless steel at temperatures ranging from 1223 K to 1473 K (950 °C to 1200 °C) and strain rates from 0.001 to 100 s?1. The constitutive analysis of flow stress was carried out using the hyperbolic sine function, and the material constants were determined at two typical strains of 0.3 and 0.7. The power dissipation map, instability map, and processing map for the material were developed for strains of 0.3 and 0.7. The developed processing maps were based on the hyperbolic sine as well as the conventional power-law constitutive equations. The efficiency of power dissipation (η) varied from 12 to 60 pct over the studied temperature and strain rate. The highest value of η was obtained at strain rates below 0.01 s?1, whereas the lowest value of η was observed at the intermediate strain rates. The instability region in sin h-based processing map was only observed in the range of 1423 K to 1473 K (1150 °C to 1200 °C) and at a strain rate of 100 s?1, while the conventional processing map did not predict any instability region. Optical microscopy observations were more consistent with the results of the sin h-based processing map and indicated that the instability regime at high temperatures and high strain rates was due to the development of adiabatic shear bands.  相似文献   

7.
In this study, two Zr-based amorphous alloy matrix composites reinforced with STS304 stainless steel continuous fibers whose diameters were 110 and 250 μm were fabricated by the liquid pressing process. Using a Hopkinson pressure bar, the compressive deformation behavior was investigated at a strain rate of about 103 s?1, and the results were then compared with those obtained under quasi-static loading. 65 to 68 vol pct of STS fibers were homogeneously distributed in the amorphous matrix, in which considerable amounts of dendritic crystalline phases were present. According to the dynamic compressive test results, shear cracks were formed at the maximum shear stress direction in the 110-μm-diameter-fiber-reinforced composite to reach the final failure. In the 250-μm-diameter-fiber-reinforced composite, fibers were not cut by shear cracks because the fiber diameter was large enough to restrict the propagation of shear cracks, while taking over a considerable amount of compressive loads over 1500 MPa. This composite showed the higher yield and maximum compressive strengths and plastic strain than the 110-μm-diameter-fiber-reinforced composite because of the sufficient ductility of STS fibers, the effective interruption of propagation of shear cracks, and the strain hardening of fibers themselves.  相似文献   

8.
Superplastic deformation behavior of a fine grain 5083 Al sheet (Al-4.2 pct Mg-0.7 pct Mn, trade name FORMALL 545) has been investigated under uniaxial tension over the temperature range of 500 °C to 565 °C. Strain rate sensitivity values >0.3 were observed over a strain rate range of 3 × 10−5 s−1 to 1 × 10−2 s−1, with a maximum value of 0.65 at 5 × 10−4 s−1 and 565 °C. Tensile elongations at constant strain rate exceeded 400 pct; elongations in the range of 500 to 600 pct were obtained under constant crosshead speed and variable strain rates. A short but rapid prestraining step, prior to a slower superplastic strain rate, provided enhanced tensile elongation at all temperatures. Under the two-step schedule, a maximum tensile elongation of 600 pct was obtained at 550 °C, which was regarded as the optimum superplastic temperature under this condition. Dynamic and static grain growth were examined as functions of time and strain rate. It was observed that the dynamic grain growth rate was appreciably higher than the static growth rate and that the dynamic growth rate based on time was more rapid at the higher strain rate. Cavitation occurred during superplastic flow in this alloy and was a strong function of strain rate and temperature. The degree of cavitation was minimized by superimposition of a 5.5 MPa hydrostatic pressure during deformation, which produced a tensile elongation of 671 pct at 525 °C. R. VERMA, formerly Visiting Scientist, Department of Materials Science and Engineering, University of Michigan  相似文献   

9.
Nanovoid growth was investigated using molecular dynamics to reveal its dependence on void size, strain rate, crystallographic loading orientation, initial nanovoid volume fraction, and simulation cell size. A spherical nanovoid was embedded into a periodic face-centered cubic (fcc) Al lattice, and a remote uniaxial load was applied to elucidate dislocation nucleation and shear loop formation from the void surface as well as the subsequent void growth mechanisms. The nucleation stresses and void growth mechanisms were compared for four different strain rates (107 to 1010 seconds?1), five different simulation cell sizes (4-nm to 28-nm lengths), four different initial nanovoid volume fractions, and seven different tensile loading orientations representative of the variability within the stereographic triangle. The simulation results show an effect of the size scale, crystallographic loading orientation, initial void volume fraction, and strain rate on the incipient yield stress for simulations without a void (single-crystal bulk material). For instance, the crystallographic orientation dependence on yield stress was less pronounced for simulations containing a void. As expected, dislocations and shear loops nucleated on various slip systems for the different loading orientations, which included orientations favored for both single slip and multiple slip. The evolution of the nanovoid volume fraction with increasing strain is relatively insensitive to loading orientations, which suggests that the nanoscale plastic anisotropy caused by the initial lattice orientation has only a minor role in influencing the nanovoid growth rate. In contrast, a significant influence of the initial nanovoid volume fractions was observed on the yield stress, i.e., a ~35 pct decrease in yield stress was caused by introducing a 0.4 pct nanovoid volume fraction. Furthermore, a continuum-scale bridging parameter m—which is a material rate sensitivity parameter in continuum damage mechanics—was calculated and found to be close to 1. Consequently, atomistic simulations of this type can indeed inform continuum void growth models for application in multiscale models.  相似文献   

10.
In the present work, IMI 834, a near α titanium alloy was evaluated for tensile and low cycle fatigue (LCF, with and without hold time) behavior at 873K. Tensile tests were performed at the initial strain rate of 4 × 10?3 s?1 at 873K. Fully reversed, total strain control LCF tests were conducted at total strain amplitude of ± 1.0% at constant strain rate of 4 × 10?3 s?1 at 873K. For LCF tests with dwell, hold time were imposed in tension, compression and tension — compression mode with varied hold times of 60 sec, 120 sec, 180 secs. In LCF tests without dwell, the Coffin-Manson plot showed dual slope behavior at 873K. In LCF tests with dwell, at 873K, tensile, compressive and tensile — compressive hold time tests have shown lower LCF resistance than that of the tests without hold time. Among the three modes of hold times employed, the tensile hold has exhibited the highest LCF resistance followed by tensile — compressive and compressive hold time tests. In the present study, tensile hold introduces compressive mean stresses while the compressive hold introduces tensile mean stresses. Further, the creep effect of stress relaxation was examined at 873K in order to explain the hold time effects.  相似文献   

11.
To provide insight into the microstructural evolution and mechanical behavior of bulk nanostructured Ti, we used cold gas dynamic spraying of Ti particles to synthesize thick coatings (e.g., >10 mm in thickness). Accordingly, the grain size, lattice parameter, lattice strain, residual stress, porosity, microhardness, tensile, and compressive behavior of the bulk Ti deposits before and after annealing were comparatively analyzed. Our results show that the microstructure of the as-sprayed bulk Ti was characterized by a grain size of ~60 nm, lattice expansion (~2 pct for \( a \) and ~3 pct for \( c \) ), lattice strain (~1.65 × 10?5), and residual compressive stress (~53 MPa). Moreover, annealing of the as-deposited bulk Ti led to a significant decrease in lattice expansion, lattice strain, and residual stress, whereas porosity remained unchanged (~11 pct). The mechanisms of grain growth, as well as the evolution of particle interfaces during annealing, were also investigated. In terms of mechanical behavior, the as-deposited bulk Ti exhibited a very low modulus (52 GPa) with relatively high tensile and compressive strength values (180 and 850 MPa, respectively). Annealing in the temperature range of 1023 K to 1173 K (750 °C to 900 °C) led to a significant increase of tensile and compressive strength (to 380 MPa and more than 1200 MPa, respectively). Finally, annealing resulted in a slight increase of elastic modulus, which was rationalized on the basis of changes in pore geometry in the bulk Ti deposits.  相似文献   

12.
Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s?1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of ~?90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent ‘n’ of the base metal and weldment was ~?0.519. Activation energy ‘Q’ of base metal and EB weldments were 420 to 535 kJ mol?1 determined through isothermal tensile tests and 625 to 662 kJ mol?1 through jump-temperature tensile tests. Strain rate sensitivity ‘m’ was low (<?0.119) for the base metal and (<?0.164) for the weldment. The δ phase was revealed in specimens annealed at 700 °C, whereas, twins and fully recrystallized grains were observed in specimens annealed at 1025 °C. Low-angle misorientation and strain localization in the welds and the HAZ during tensile testing at higher temperature and strain rates indicates subgrain formation and recrystallization. Higher elongation in the weldment (at Test temperature >?775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.  相似文献   

13.
Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy   总被引:1,自引:0,他引:1  
Hot compression tests were conducted on Ti-13V-11Cr-3Al beta-Ti alloy in the temperature range of 1203 K to 1353 K (930 °C to 1080 °C) and at strain rates between 0.001 and 1 s?1 The stress–strain curves showed pronounced yield point phenomena at high strain rates and low temperatures. The yield point elongation and flow stresses at the upper and lower yield points were related to the Zener–Hollomon parameter. It was found that dynamic recovery at low strain rates and dynamic recrystallization at high strain rates were the controlling mechanisms of microstructural evolution. The results also showed that strain rate had a stronger influence on the hot deformation behavior than temperature. The microstructural observations and constitutive analysis of flow stress data supported the change in the hot deformation behavior of the studied alloy varies with strain rate. For various applied strain rates, the activation energy for hot deformation was calculated in range of 199.5 to 361.7 kJ/mol. At low strain rates (0.001 and 0.01 s?1), the value of activation energy was very close to the activation energy for the diffusion of V, Cr, and Al in beta titanium. The higher value of activation energy for deformation at high strain rates (0.1 and 1 s?1) was attributed to the accumulation of dislocations and the tendency to initiate dynamic recrystallization.  相似文献   

14.
In this study, new Ti-based metallic glass matrix composites (MGMCs) are fabricated, which contains ~41 vol pct of large dendrites with a size of ~0.8 to 1.2 μm, The newly developed Ti-based MGMCs exhibit excellent tensile strength of ~1650 MPa and a tensile strain of ~2.5 pct at room temperature. During tensile deformation, the work hardening is scarcely found in this alloy. Thus, the deformation of the in situ MGMC is simply described with two stages: (1) elastic and (2) softening deformation stages. Two simple models are adapted to simulate each stage. In the supercooled liquid region [at 613 K (340 °C)], superplastic homogeneous deformation, which is the feature of monolithic bulk metallic glasses, is not observed. The mechanical properties at 613 K (340 °C) are sensitive to the strain rates, the yield strength drops from 1390 to 960 MPa, when the strain rate decreases from 1 × 10?2 to 1 × 10?3/s, while the displacement is almost increased by twofold.  相似文献   

15.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 3.16 × 10?3 s?1 over the temperatures ranging from 300 K to 1123 K (27 °C to 850 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of nitrogen-alloyed low carbon grade type 316L(N) austenitic stainless steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The steel exhibited distinct low- and high-temperature serrated flow regimes and anomalous variations in terms of plateaus/peaks in flow stress/strength values and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. The fracture mode remained transgranular. At high temperatures, the dominance of dynamic recovery is reflected in the rapid decrease in flow stress/strength values, work hardening rate, and increase in ductility with the increasing temperature and the decreasing strain rate.  相似文献   

16.
The stress-strain response of polycrystalline, γ-quenched U-7.5 wt pct Nb-2.5 wt pct Zr alloy was studied as a function of strain rate and compared to equilibrium stress-strain tests performed by allowing the strain to reach a maximum value at incrementally increasing stresses. Equilibrium stress-strain tests were also performed on prestressed samples. Sheet tensile specimens were held at various states of strain in an X-ray diffractometer to determine crystal structural changes during deformation. Prestressed tensile bars were sectioned and examined metallographically and with the X-ray diffractometer. Two linear regions were observed in the equilibrium stress-strain tests: a low stress region with a slope of 5.3 to 5.5 x 106 psi, and a region above 40,000 psi with a slope of 3.3 x 106 psi. Finite strain rates tended to increase both slopes. The diffractometer experiments yielded plots of lattice parameter vs strain which showed a shift from a bcc structure of the γs phase, to a bct structure of the γ0 phase between 1 and 3 pct deformation. It is postulated that this is a thermoelastic martensite transformation. A semiempirical equation was developed which describes the equilibrium stress-strain behavior of this alloy in terms of a stress induced phase transformation.  相似文献   

17.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 1.26 × 10?3 s?1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.  相似文献   

18.
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical (~ 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction (~ 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10?4 (quasi-static) to 650 s?1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction (~ 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction (~ 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core–shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.  相似文献   

19.
The low-cycle fatigue behavior of ULTIMET®, a wrought cobalt-based alloy, was studied at the temperatures of 294, 873, and 1,173 K under isothermal conditions. A constant strain rate of 3.0×10?3 s?1 was used with fully reversed strain ranges between 0.4 and 2.5 pct. Observations on the strain vs fatigue-life curves, cyclic stress-strain responses, and fatigue fracture modes were obtained. The microstructure evolution of the ULTIMET alloy was characterized using X-ray diffraction, scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). For fatigue tests performed at 294 and 873 K, plastic-strain-induced, fcc-to-hcp phase transformations were observed. Twinning and carbide precipitation were found to contribute to the significant cyclic hardening observed at 1,173 K.  相似文献   

20.
Chronopotentiometric studies were made on a cryolite melt containing 3.0 wt pct Al2O3 and 0.466 wt pct Fe(II) at 1293 K (1020 °C). The diffusion coefficient calculated from the time of the principal chronopotentiometric transition decreased as the current density was increased, and at the same time, a second subsequent transition appeared. The diffusion coefficient calculated from this second transition was constant at 5.44 × 10?5 cm2 s?1. The results were interpreted to show that Fe(II) in the solution exists in two forms. Fe is deposited reversibly from an active form; its exchange current density must be >1 A cm?2. Deposition from the other form is irreversible, and it occurs directly only at high overpotentials, leading to the second transition. The equilibrium constant [active]/[inactive] = 5.4. When the equilibrium is displaced by electrolysis of the active form, the inactive form decomposes to replenish it with a rate constant of 0.9 s?1. The Tafel curve for the direct deposition of the inactive form shows a slope of 113 mV/decade, which is interpreted as n = 2 and a symmetry factor ≈1. The exchange current density is approximately 0.3 μA cm?2. The active and inactive forms are identified tentatively as FeF 3 ? and FeF 5 3? , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号