共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy 总被引:7,自引:0,他引:7
S. Kuramoto T. Furuta J. H. Hwang K. Nishino T. Saito 《Metallurgical and Materials Transactions A》2006,37(3):657-662
Mechanisms for plastic deformation in the newly developed Ti-24 at. pct (Ta + Nb + V)-(Zr,Hf)-O alloys (Gum Metal) were investigated
in relation to their unique properties. Transmission electron microscopy revealed that the microstructure after deformation
was characterized by highly distorted crystal images, which are accompanied by numerous “giant faults.” Such plastic behavior
implies that a large amount of elastic stain energy was stored discretely and hierarchically during cold working. Calculated
elastic constants of the Ti-X (Nb,Ta,Mo,V) binary systems predicted that Young’s modulus in 〈001〉 and shear moduli along some
directions including slip systems in a bcc crystal were extraordinary small. The low modulus not only well explains the highly
distorted microstructure observed in the cold-worked specimens, but also signifies that ideal shear strength of the developed
alloys is a very small value, which is close to the practical strength required for plastic deformation in the alloy. This
implies that the giant faults observed in the deformed specimen were formed without the aid of dislocation glide. 相似文献
3.
通过对4032高硅变形铝合金的热处理制度研究,获得了4032铝合金最佳热处理工艺,该制度使棒材性能、低倍组织满足相应的标准需求。 相似文献
4.
Matthew R. Barnett Alireza Ghaderi Joseph D. Robson 《Metallurgical and Materials Transactions A》2014,45(8):3213-3221
Deformation twinning plays an important role in the yielding of extruded magnesium alloys, especially when loaded in compression along the extrusion axis. The magnitude of this contribution is not accurately known. The present study employs electron backscatter diffraction to reveal the influence of grain orientation on twin-volume fraction for alloy AZ31 tested in compression to strains between 0.008 and 0.015. For these strains, it is seen that approximately 45 pct of the deformation can be attributed to “tensile” twinning. The variation of twin-volume fraction over different orientation classes correlates closely with the maximum Schmid factors for both tensile twinning and basal slip. These effects are readily explained quantitatively using a mean field crystal plasticity model without recourse to stochastic effects. Encouraged by this, we introduce an analytical approximation based on the uniformity of (axial) work. 相似文献
5.
Mg-Y-Nd-Gd-Zr稀土镁合金热变形行为 总被引:2,自引:4,他引:2
通过差热分析、 X射线衍射、金相显微镜等手段分析了Mg-Y-Nd-Gd-Zr稀土镁合金的微观组织, 结合差热分析结果以及金相显微组织, 得出在550 ℃均匀化热处理6 h以上能够使大部分合金元素固溶.采用GLEEBLE-1500热模拟实验机对Mg-Y-Nd-Gd-Zr稀土镁合金在温度为250~450 ℃、应变速率为0.002~1 s-1、最大变形程度为50%的条件下, 进行了热压缩实验研究.结果表明: 材料流变应力行为和显微组织受到变形温度和变形速率的严重影响, 可以用Zener-Hollomon参数的幂指数形式进行描述, 计算出变形激活能为223.69 kJ·mol-1.合金的峰值流变应力随应变速率的增加而增加, 随温度的升高而降低; 变形激活能随应变速率的增大而增大. 相似文献
6.
David Snyder Edward Y. Chen Charlie C. Chen Sammy Tin 《Metallurgical and Materials Transactions A》2013,44(1):479-493
The flow behavior and recrystallization response of a 9310 steel alloy deformed in the ferrite temperature range were studied in this work. Samples were compressed under various conditions of strain (0.6, 0.8 and multi-axial), strain rate (10?4 seconds?1 to 10?1 seconds?1) and temperature [811 K to 1033 K (538 °C to 760 °C)] using a Gleeble thermo-mechanical simulator. Deformation was characterized by both qualitative and quantitative means, using standard microscopy, electron backscatter diffraction (EBSD) analysis and flow stress modeling. The results indicate that deformation is primarily accommodated through dynamic recovery in sub-grain formation. EBSD analysis shows a continuous increase in sub-grain boundary misorientation with increasing strain, ultimately producing recrystallized grains from the sub-grains at high strains. This suggests that a sub-grain rotation recrystallization mechanism predominates in this temperature range. Analyses of the results reveal a decreasing mean dynamically recrystallized grain size with increasing Zener-Hollomon parameter, and an increasing recrystallized fraction with increasing strain. 相似文献
7.
8.
将Ti-662合金铸锭在快锻机和径锻机上经过7火次锻造制备出4,90mm的棒材。研究了2种不同锻造变形方式(轴向反复镦拔和换向反复镦拔)和不同热处理工艺对Ti-662合金棒材组织和性能的影响。结果表明:采用换向反复镦拔锻造获得的Ti-662合金棒材组织均匀无方向性,横向性能较轴向镦拔获得的棒材明显改善,纵、横向性能差别不大;不同的热处理实验对比得出,采用880℃×1h/WC+600℃×4h/AC固溶加时效处理可使棒材的强度和塑性达到良好匹配,纵、横向力学性能均可满足MIL—T-904标准要求,而且经超声波探伤检测达到AMS2631B中的A1级质量要求。 相似文献
9.
10.
Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy 总被引:1,自引:0,他引:1
Microstructural changes and cyclic deformation characteristics of friction-stir-welded 7075 Al alloy were evaluated. Friction stir welding (FSW) resulted in significant grain refinement and dissolution of η′ (Mg(Zn,Al,Cu)2) precipitates in the nugget zone (NZ), but Mg3Cr2Al18 dispersoids remained nearly unchanged. In the thermomechanically affected zone (TMAZ), a high density of dislocations was observed and some dislocations were pinned, exhibiting a characteristic Orowan mechanism of dislocation bowing. Two low-hardness zones (LHZs) between the TMAZ and the heat-affected zone (HAZ) were observed, with the width decreasing with increasing welding speed. Cyclic hardening and fatigue life increased with increasing welding speed from 100 to 400 mm/min, but were only weakly dependent on the rotational rate between 800 and 1200 rpm. The cyclic hardening of the friction-stir-welded joints exhibiting a two-stage character was significantly stronger than that of the base metal (BM) and the energy dissipated per cycle decreased with decreasing strain amplitude and increasing number of cycles. Fatigue failure occurred in the LHZs at a lower welding speed and in the NZ at a higher welding speed. Fatigue cracks initiated from the specimen surface or near-surface defects in the friction-stir-welded joints, and the initiation site exhibited characteristic intergranular cracking. Crack propagation was characterized by typical fatigue striations along with secondary cracks. 相似文献
11.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1250℃、应变速率为0.001~10s<'-1>条件下的热变形行为,采用金相显微镜对GH690合金热模拟试样的纵截面变形组织进行观察.结果表明:应变速率和变形温度对合金的流变应力与变形组织有显著影响.流变应力随变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感的材料;动态再结晶晶粒尺寸随应变速率的增加而减小,随变形温度的增大而增大.采用Zener-Hollomon参数的双曲正弦函数能较好地描述GH690合金高温变形时的流变行为,得到峰值应力表达式,GH690合金的热变形激活能Q为370.4 kJ·mol<'-1>. 相似文献
12.
采用Gleeb-3500热模拟实验机,对再结晶态TZM(Mo-0.39Ti-0.093Zr-0.017C)合金的热变形特征进行了研究。试样用粉末冶金的方法制备,经过70%变形量的高温锻造,然后分别在1100,1200,1300,1400,1500和1600℃的温度下退火,观察了TZM合金的再结晶过程。热模拟实验在1200℃的温度下进行,应变速率为0.1 s-1,变形量为30%,得到了压缩过程的真应力-应变曲线。研究结果表明,TZM合金的硬度随着退火温度的升高而显著降低,且下降的速率为0.13(HV/℃),1600℃退火后,晶粒已经充分长大,再结晶完成,TZM合金明显变软;完全再结晶后的TZM合金在1200℃下热压缩变形,当应变量小于5%时,应力随着应变的增加而迅速增加,加工硬化现象明显;当应变量大于5%时,应力随着应变的增加而缓慢增加,加工硬化速率降低。 相似文献
13.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s~(-1)和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴. 相似文献
14.
Hot deformation of a continuously cast low alloyed steel is studied by means of hot compression and tensile tests by using a Gleeble® 1500 machine after austenitization in a wide range of strain rates and between 720–800 °C. The flow data are evaluated to obtain the strain rate sensitivity and the processing maps. A new calculation method is used, yielding on the instability parameter defined as κJ which correlates well with the microstructural changes. The strain rate sensitivity does not predict any instability but all the others instability parameters do, including the new κJ. Flow instability appears at high temperatures and low strain rates where pores are formed at the austenitic grain boundaries, causing a decay of ductility in the tensile test. During hot deformation more ferrite is formed than corresponding heat treatments without deformation. In these conditions, the deformation is concentrated in the softer ferrite phase. The deformation induced ferrite deforms by dynamic recovery forming new grains as revealed by metallography and is correlated with low coefficients of power dissipation. The sinh type constitutive equation represents the flow data well with a stress exponent n = 4.1 and an apparent activation energy Q = 218 kJ/mol. 相似文献
15.
16.
采用凸轮式高速形变试验机,压缩端面上带凹槽并在凹槽里充满不同软化温度的玻璃粉作润滑剂的圆柱形试件的方法,其变形温度为850—1150℃,变形速度为5—80S-1,变形程度为Ln(h0/h1)=0—0.6931。对40MnB等四个合金结构钢进行高温高速下塑性变形阻力实验研究。
本文不仅提供了40MnB变形阻力计算图表,而且对目前常用变形温度对变形阻力的影响项具有两种不同结构型式的拟合曲线采用非线性回归进行分析比较,提出了拟合精度较高的变形阻力数学模型。 相似文献
本文不仅提供了40MnB变形阻力计算图表,而且对目前常用变形温度对变形阻力的影响项具有两种不同结构型式的拟合曲线采用非线性回归进行分析比较,提出了拟合精度较高的变形阻力数学模型。 相似文献
17.
含Sc铝镁合金的超塑变形机制 总被引:1,自引:0,他引:1
采用透射电镜研究了含微量Sc元素的AlMg合金在超塑变形过程中的显微组织和位错行为。结果表明:合金在超塑变形过程中发生了四个连续过程:①动态再结晶;②晶界向晶内激发位错;③位错在晶内密集并且受到第二相Al3Sc质点的阻碍作用,同时通过攀移越过晶内弥散分布的Al3Sc粒子;④位错向晶界运动并在晶界处消失。动态再结晶是合金在超塑变形中存在的组织效应,起到了细化晶粒,诱发微细晶超塑性的作用。该合金超塑变形的主要机制为晶界滑动伴随晶内位错运动 相似文献
18.
采用Gleeble-1500热模拟机进行恒温和恒速压缩变形实验,变形温度范围为400~460 ℃,应变速率为0.001~0.1 s-1.研究了Al-Cu-Mg-Ag-Zr合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n.结果表明:流变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大.可用包含Arrhenius项的Zener-Hollomon参数描述该合金高温塑性变形时的流变行为. 相似文献
19.
Metallurgical and Materials Transactions A - Strain localization occurring at advanced deformation under compression of Mg-0.28 at. pctGd alloy has been studied. The strain localization develops in... 相似文献
20.
P. Tomlinson H. Azizi-Alizamini W. J. Poole C. W. Sinclair M. A. Gharghouri 《Metallurgical and Materials Transactions A》2013,44(7):2970-2983
The multiaxial deformation of magnesium alloys is important for developing reliable, robust models for both the forming of components and also analysis of in-service performance of structures, for example, in the case of crash worthiness. The current study presents a combination of unique biaxial experimental tests and biaxial crystal plasticity simulations using a visco-plastic self-consistent (VPSC) formulation conducted on a relatively weak AZ80 cast texture. The experiments were conducted on tubular samples which are loaded in axial tension or compression along the tube and with internal pressure to generate hoop stresses orthogonal to the axial direction. The results were analyzed in stress and strain space and also in terms of the evolution of crystallographic texture. In general, it was found that the VPSC simulations matched well with the experiments. However, some differences were observed for cases where basal 〈a〉 slip and $ \left\{ {10\bar{1}2} \right\} $ extension twinning were in close competition such as in the biaxial tension quadrant of the plastic potential. The evolution of texture measured experimentally and predicted from the VPSC simulations was qualitatively in good agreement. Finally, experiments and VPSC simulations were conducted on a second AZ80 material which had a stronger initial texture and a higher level of mechanical anisotropy. In the previous case, the agreement between experiments and simulations was good, but a larger difference was observed in the biaxial tension quadrant of the plastic potential. 相似文献