首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Superficial short-wavelength ultraviolet (UV-C) treatment (1.2 kJ/m2) of fresh-cut endive was combined with conventional cold (4 °C, 120 s) and innovative warm (45 °C, 120 s) water washing prior to and after irradiation in order to improve its microbial and sensory quality including physiological properties. UV-C doses applied exerted only minor physiological stress on the plant tissue, irrespective of the washing procedure as indicated by largely unaltered headspace gas compositions, chlorophyll fluorescence maximum quantum yields (F v/F m), and retention of chlorophylls and β-carotene. Independent of the washing procedure applied, phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) activities were slightly inhibited by UV-C irradiation. As a result of UV-C irradiation, significantly improved microbiological and sensory quality was retained during the entire storage period, particularly, when applied after washing. Being applicable in organic fresh-cut production, UV-C represents a valuable alternative to chlorine application to washing water. The most efficient decontamination (2.1 log10 units) of fresh-cut endive was achieved by combining warm water washing with subsequent UV-C irradiation. Furthermore, when UV-C lamps were integrated into the water tank of a continuous industrial washing machine, the microbial loads of the process water were also significantly lowered. Accordingly, in-line UV-C decontamination of process water may be instrumental in minimizing both fresh water consumption and the risk of cross-contamination.  相似文献   

2.
The objective of this study was to determine the effects of alternative washing procedures on fresh-cut iceberg lettuce and endive, applying warm water (45 °C), warm water with CaCl2 (1 g/L), and chlorinated water (4 °C, 120 ppm), respectively. Processing was conducted on pre-industrial scale, and the produce was subsequently stored in consumer-sized bags (4 °C, 10 days). O2 and CO2 levels in the modified atmosphere, and activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenoloxidase (PPO) of the samples were analyzed. Counts of total aerobic bacteria and pseudomonades were determined on the produce and in the process water. In both commodities, wound-induced PAL activities were significantly reduced by warm water treatment. In iceberg lettuce, adding CaCl2 to warm water resulted in a further reduction of PAL activities. Chlorinated water was less effective than warm water in suppressing wound-induced PAL activity in endive, but proved to be most effective in reducing total microbial cell counts by 1.1 and 2.1 log10 cfu/g in iceberg lettuce and endive, respectively. Warm water treatment exhibited reduction rates of similar magnitudes. For process water, chlorine proved to be the most efficient sanitizer. PPO and POD activities were only marginally affected by the different washing procedures. As indicated by respiration of the fresh-cut produce, warm water treatments applied retained the vitality of both plant species. The results suggest that warm water treatments are suitable measures to improve the quality of iceberg lettuce and endive, but were less efficient in sanitizing the process water.  相似文献   

3.
The effectiveness of pulsed light (PL) treatments to inhibit microorganisms on fresh-cut tomatoes (Lycopersicon esculentum Mill., cv. Daniela) was investigated. Tomato slices inoculated with Escherichia coli or Listeria innocua were exposed to PL treatments (4, 6, or 8 J cm?2 fluence) and kept cold at 4 °C for 20 days. L. innocua and E. coli counts, gases in the headspace of the containers (O2 and CO2), pH, titratable acidity, and soluble solid content were monitored throughout the cold storage. The PL treatments reduced significantly (p < 0.05) initial loads of both microbes. The effect of the PL fluence on the survival number of microoganisms was described by a log-linear model (R 2 = 0.849–0.999). At any fixed time within the cold storing, the microbial counts for untreated samples were always higher than those cut tomatoes that had been previously PL-treated. The behavior of L. innocua and E. coli during the storage were well adjusted (R 2 > 0.930) by Gompertzian models; the studied microorganisms exhibited different patterns during the storage period. On the other hand, O2 and CO2 partial pressures in containers with fresh-cut tomatoes were also significantly affected by PL treatments (p < 0.05). The highest PL fluence caused the greatest changes of O2 and CO2 contents. In addition, the application of PL triggered an acceleration of the O2 consumption during the cold stage. PL treatments might be used to effectively extend the safety of fresh-cut tomatoes over 12 days of storage against E. coli and L. innocua growth.  相似文献   

4.
Potatoes are an important food in many regions of the world and are commonly used in a variety of food products. Thermal transition and thermo-physical properties of potatoes are important in order to design efficient food processes and select appropriate storage conditions. In this study, we determined the thermal transitions and thermophysical properties of raw and blanched/par-fried potato for a temperature range of ??32 to 21.1 °C. Using differential scanning calorimetry, we found an initial freezing point (Tf) at ??1.8?±?0.1 °C, an onset of melting (Tm) at ??9.9?±?0.2 °C and an unfreezable water content (Xw) for maximally freeze-concentrated raw potato at 0.21 kg water/kg potato. Corresponding values for blanched/par-fried potatoes were ??0.9?±?0.1 °C, ??11.0?±?0.2 °C and 0.18 kg water/kg potato. Results show that an increase in solids content decreased Tf of both raw and blanched potatoes. We modelled the relationship between them using the Chen model. The apparent specific heat (Capp) increased around Tf to 31.7?±?1.13 kJ/kg K for raw potato and 26.7?±?0.62 kJ/kg K for blanched/par-fried potato. For frozen raw potato at ??32 °C, thermal diffusivity (α) was 0.89?±?0.01?×?10??6 m2/s and thermal conductivity (k), 1.82?±?0.14 W/m K, respectively. These values were higher for frozen raw potato than for the unfrozen raw potato (0.15?±?0.01?×?10??6 m2/s and 0.56?±?0.08 W/m K, respectively at 21.1 °C). The apparent density (ρ) of frozen raw potato (992?±?4.00 kg/m3 at ??32 °C) was less than that for unfrozen raw potato (1053?±?4.00 kg/m3 at 21.1 °C), and a similar trend was obtained for blanched/par-fried potato (993?±?2.00 kg/m3 at ??32 °C and 1188?±?7.00 kg/m3 at 21.1 °C, respectively). This study established a correlation between thermo-physical properties and temperature. Findings may be used to inform the design and optimization of freezing processes and frozen storage for potato products.  相似文献   

5.
Novel biomaterials and optimal processing conditions are fundamental in low-cost packaging material production. Recently, a novel biobased intact bitter cassava derivative was developed using an intrinsic, high-throughput downstream processing methodology (simultaneous release recovery cyanogenesis). Processing of intact bitter cassava can minimise waste and produce low-cost added value biopolymer packaging films. The objective of this study was to (i) develop and characterise intact bitter cassava biobased films and (ii) determine the optimal processing conditions, which define the most desirable film properties. Films were developed following a Box-Behnken design considering cassava (2, 3, 4 % w/v), glycerol (20, 30, 40 % w/w) and drying temperature (30, 40, 50 °C) and optimised using multi-response desirability. Processing conditions produced films with highly significant (p?<?0.05) differences. Developed models predicted impact of processing conditions on film properties. Desirable film properties for food packaging were produced using the optimised processing conditions, 2 % w/v cassava, 40.0 % w/w glycerol and 50 °C drying temperature. These processing conditions produced films with 0.3 %; transparency, 3.4 %; solubility, 21.8 %; water-vapour-permeability, 4.2 gmm/m2/day/kPa; glass transition, 56 °C; melting temperature, 212.6 °C; tensile strength, 16.3 MPa; elongation, 133.3 %; elastic modulus, 5.1 MPa and puncture resistance, 57.9 J, which are adequate for packaging applications. Therefore, intact bitter cassava is a viable material to produce packaging films that can be tailored for specific sustainable, low-cost applications.  相似文献   

6.
In this study, response surface methodology was used to optimize the extraction temperature (25–75 °C) and ethanol concentration (0–70 %, ethanol/water, v/v) to maximize the extraction of total phenolic compounds (TPC) from araticum pulp. The efficiency of the extraction process was monitored over time, and equilibrium conditions were reached between 60–90 min. A second-order polynomial model was adequately fit to the experimental data with an adjusted R 2 of 0.9793 (p < 0.0001) showing that the model could efficiently predict the TPC content. Optimum extraction conditions were ethanol concentration of 46 % (v/v), extraction temperature of 75 °C and extraction time of 90 min. Under the optimum conditions, the araticum pulp showed high TPC content (4.67 g GAE/100 g dw) and also high antioxidant activity in the different assays used (46.56 μg/mL, 683.65 μmol TE/g and 1593.72 μmol TE/g for DPPH IC50, TEAC and T-ORACFL, respectively). From our extraction procedure, we successfully recovered a significantly higher amount of TPC compared to other studies in the literature to date (1.5–22-fold higher). Furthermore, TPC and antioxidant activity were present in the fruit in levels that are difficult to find in other common fruits. These results expose a potential approach for improving human health through consumption of araticum fruit.  相似文献   

7.
Structural and rheological characterization of reconstituted hydrogels developed from A. vera non-fibrous alcohol insoluble residue (NFAIR) powder using different methods [viz., shaking (S), heating-shaking (HS), and heating (H)] and concentrations (viz., 0.2–1.6 %, w/v) was carried out. Functional group distribution by FTIR spectroscopy and Congo red (CR) method revealed the presence of acetylated acemannan in A. vera powder. Dynamic oscillation studies of A. vera (NFAIR) fluids at all concentrations of 0.2–1.6 %, w/v, showed gel strength in the order of H > HS > S method. However, in H method, increase in concentration from 0.2 to 1.6 %, w/v showed the conformational transition from semi-diluted solution to weak gel nature. Rheological models described the effect of heating temperatures (HT); 30–90 °C, and times (Ht); 15–60 min on viscoelastic behavior in reconstituted A. vera fluids. The reconstituted A. vera hydrogel prepared with a concentration of 1.6 %, w/v using 50 °C (HT) and 30 min (Ht) condition showed a good agreement with the Power law (storage modulus, G′) and Weak gel model (complex modulus, G*) fitted data (R2 > 0.94) resulting higher viscoelastic moduli intercepts; G0 (71.5 Pa s n), G0 (33.5 Pa s n), lower slopes; n′ (0.22), n″ (0.06), higher network strength (A F , 121.3 Pa s1/z ) and number of network (z, 5.3) values. The obtained results suggested that heating at 50 °C/30 min can develop aqueous weak gel networks of A. vera with enhanced gel strength which may be utilized as a novel gelling agent for wide variety of targeted applications in food and pharmaceutical sectors.  相似文献   

8.
In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x 1), L/D ratio (x 2), barrel temperature (°C; x 3), and feed mix moisture content (%; x 4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed?>?80 rpm, L/D ratio?>?12, barrel temperature?>?80 °C, and feed mix moisture content?>?20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19?×?10?7 m3/s (x 1?=?139.08 rpm, x 2?=?15.90, x 3?=?99.56 °C, and x 4?=?59.72%) and 0.53?×?10?7 m3/s (x 1?=?59.65 rpm, x 2?=?11.93, x 3?=?68.98 °C, and x 4?=?20.04%).  相似文献   

9.
A modified diffusion-based mathematical model is proposed to describe the moisture movement during continuous and intermittent drying of Eucalyptus saligna. This model includes the temperature change, the surface drying coefficient (β n ) and 2 diffusion coefficients [from green to FSP (D f ) and from FSP to dry condition (D o )] as important parameters. The final model expression obtained was M?=?exp (??25 β n 2 D t /l2) with the β n used was 1.5807 kg m?2 s?1, the D f was 2.26?×?10?11 m2 s?1, and the D o was 5.85?×?10?12 m2 s?1. The range of temperature change between heating and non-heating phases in the intermittent drying regimes was from 24.9 to 31.8 °C. The R2 values obtained when the model was fitted into the drying data of different intermittent regimes ranged from 71.5 to 85.9%. The R2 value was 87.4% when the model was fitted into continuous trial data. The high values of R2 indicate that the model can be used to understand the moisture reduction both in intermittent and continuous regimes.  相似文献   

10.
Fruits have been the focus of several studies aimed at finding new antioxidant sources for protection against the damage caused by reactive species. In this study, the antioxidant activity and the presence of phenolic compounds in all parts (peel, pulp, and seeds) of Eugenia involucrata DC. fruits were evaluated. DPPH·, ABTS·+, and ORAC methods were used to determine the antioxidant activity, and an UHPLC-MS/MS method was developed for determining the phenolic compounds (gallic, chlorogenic, ferulic, p-coumaric and ellagic acids, quercetin, and myricetin). In the determination of both antioxidant activity and phenolic composition, the efficiency of solvents with different polarities—methanol/H2O (80:20, v/v), ethanol/H2O (80:20, v/v), methanol/acidified water with phosphoric acid pH 3.00 (80:20, v/v), and ethyl acetate—for the extraction of the phenolic compounds, was also evaluated. All parts of E. involucrata fruits showed antioxidant activity, in the range of 36.68 ± 1.44 to 873.87 ± 18.24 μmol TE g?1, being the highest values found in the seeds and peel when more polar extraction solvents were used. Six, five, and three phenolic compounds were identified and quantified in the pulp, peel, and seeds, respectively, with the highest abundance as p-coumaric acid (14 ± 2 mg kg?1) in the pulp, quercetin (47 ± 5 mg kg?1) in the peel, and gallic acid (74 ± 4 mg kg?1) in the seeds, also when more polar solvents were used. Although antioxidant activity methods suggested that the peel and seeds have more antioxidant potential, a wider variety of compounds were determined in the pulp.  相似文献   

11.
The aim of this study was to investigate the steaming time effects on proton transverse relaxation behavior with low field 1H nuclear magnetic resonance and structural properties of Chinese Northern-style steamed bread (CNSB). Three proton populations could be distinguished at the first 4 min: T2b (0.1–1 ms) corresponded to rigid and exchangeable protons; T22 (9–21 ms) was associated with the water protons in small and large meshes of the dough microstructure; T23 (69–300 ms) was assigned to the water protons on the surface of samples. The starch gelatinization began and the water turned into the integral part of the biopolymer at 6 min, forming T21 (1–3 ms) fraction. The gelatinization effect was strengthened up to 8 min and supplied a more mobile microenvironment, resulting in the increase of T21, A21 and M21. However, the gelatinization process ended at 8 min, bringing about the stabilization of T21, A21 and M21 until 25 min. T22 fraction accounted for the largest proportion during all the steaming process. All variation trends on structural properties of CNSB and T2 relaxation parameters including Ti, Ai (relative intensity of Ti), and Mi (population abundance of Ti) indicated that 6 and 8 min were the two transitions. The gluten matrix began to be disrupted at 6 min and was quite damaged up to 8 min by scanning electron microscopy. The peaks at 15°, 18°, 20°, and 23° in X-ray diffraction patterns appeared in the first 6 min but were lost up to 8, 10, and 25 min.  相似文献   

12.
Vacuum impregnation was used to improve the quality attributes of fresh-cut papayas. Vacuum pressure of 5 kPa was applied for 5 min, then calcium lactate (1%, w/w) and pectin methylesterase (PME) (15 U/ml), alone and in combinations (calcium lactate plus PME), were vacuum impregnated into fresh-cut papaya cubes. Papaya cubes were stored at 4 °C, and the quality of fresh-cut papaya was studied at intervals for 8 days. The hardness and chewiness levels of fresh-cut papayas that were treated with calcium lactate and PME were 8.02 and 7.83 times of untreated fresh-cut papayas at day 8, respectively. After vacuum impregnation, colour of fresh-cut papayas changed significantly (P < 0.05) and an overall weight loss was observed as well. Chelate-soluble pectin (CSP) was extracted and its content correlated well with texture properties of fresh-cut papayas. Qualitative and quantitative analyses of CSP were conducted using atomic force microscopy. The proportion of chain widths greater than 45 nm had increased 35.0% in fresh-cut papayas vacuum impregnated with calcium lactate and PME at the end of storage. The results indicate that a combination of calcium ions and PME was able to maximally preserve the quality attributes of fresh-cut papayas and extend the shelf life.  相似文献   

13.
A new method has been developed and validated to determine potential differences in thiamethoxam and its metabolite (clothianidin) contents in treated rapeseed samples, which were stored under different conditions of light exposure and temperature (protected at 20 and 30 °C; unprotected at 30 °C), using liquid chromatography coupled to a diode array detector. An efficient extraction procedure has also been proposed (average analytes recoveries were between 82 and 104%); this involved a solvent extraction using a mixture of acetonitrile and sodium chloride (60:40, v/v), centrifugation, and a concentration step in a rotary evaporator. The chromatographic analysis of the compounds was achieved using a core-shell technology-based column (Kinetex C18, 150 × 4.6 mm, 2.6 μm, 100 Å). The mobile phase consisted of 0.1% formic acid in water and 0.1% of formic acid in acetonitrile (25:75, v/v), with a flow rate of 0.5 mL/min in isocratic elution mode. The method was fully validated in terms of selectivity, limits of detection, and quantification, as well as matrix effect, linearity, precision, and trueness. Finally, the developed methodology was applied to determine thiamethoxam and clothianidin content in rapeseed samples, which were stored under different conditions of light exposure and temperature during 100 days. The results showed that rapeseeds should be stored at 20 °C and protected from light exposure, and that the loss of thiamethoxam was directly related to the formation of clothianidin.  相似文献   

14.
Lettuce is often involved in foodborne outbreaks caused by pathogenic Escherichia coli. Current control strategies have often proved ineffective to ensure safe food production. For that reason, the present study compared the efficacy of tannin extracts and chlorine treatments on the reduction of E. coli ATCC 25922 adhered to lettuce leaves. E. coli was inoculated artificially on leaf surfaces of fresh crisp lettuce. Effectiveness of water, chlorine (200 mg/L), and three commercial available tannin extracts from Acacia mearnsii De Wild. (tannin AQ (2 %, w/v), tannin SG (1 %, v/v) and tannin SM (1 %, v/v)) treatments was evaluated using the viable plate count method and scanning electron microscopy (SEM). SEM results revealed that bacterial cells are attached as individual cells and in clusters to the leaf surface after 2 h of incubation. Biofilm formation was observed after 24 h of incubation. The tannin SM treatment was able to reduce counts in approximately 2 log CFU/cm2 on leaf segments. However, treatment was less effective in the reduction of E. coli counts after 24 h of incubation when compared to 2 h incubation of the same extract. The results suggest that the tannin SM extract diminishes E. coli counts adhered to and under biofilm formation on lettuce leaves and its effect is similar to the use of chlorine solutions.  相似文献   

15.
Shredded cabbage (50 % v/v) and Daikon radish cubes (57 % v/v) with different salt concentrations (0.15, 0.5, 1, 1.5, and 1.85 %) were heated from 30 to 70 °C in a static ohmic heating cell at different voltages (65, 80, 100, 120, and 135 V) and frequencies (60, 2070, 5030, 7990, and 10,000 Hz) to evaluate their ohmic heating behaviour. Radish heated under 1.5 % salt, 120 V and 7990 Hz or 1 % salt, 135 V and 5030 Hz conditions gave the shortest heating time of 6 min from 30 to 70 °C, and cabbage gave the longest time of 128 min at 0.15 % salt, 100 V, and 5030 Hz. Regression models of heating rate as a quadratic function of the sample temperature gave R2 >0.98. The general trend observed was that the magnitude of the heating rate increased with frequency at high voltage but decreased at low voltage for cabbage, while the opposite trend was observed for radish. Heating was more efficient at higher salt concentration and applied voltage. Radish heated more rapidly than cabbage. A slight slope change was observed in all cases between 50 and 60 °C. The response surface models revealed linear, cross products and quadratic effects to be significant with R 2 over 0.98.  相似文献   

16.
New chemical marker-model food systems with d-ribose and NaOH precursors as color indicators and gellan gels as chemical marker carrier were explored for the assessment of the heating pattern of in packaged foods processed in microwave-assisted pasteurization system (MAPS). In determining appropriate precursor concentrations, a solution of 2% (w/w) d-ribose and 60 mM NaOH was heated at 60–90 °C for 0–20 min. The solution absorbance at 420 nm increased linearly, while the color parameters L* decreased linearly with heating time at all processing temperatures. In storage, the produced brown color was stable at 4 and 22 °C within 7 days. The new chemical marker-model foods were prepared by mixing 2% (w/w) d-ribose and 60 mM NaOH with 1% (w/v) low-acyl gellan gum and 20 mM CaCl2·2H2O solution. The dielectric constant of the model food samples decreased with the addition of sucrose, and the loss factors increased with the addition of salt. After processing in the pilot MAPS, the heating pattern and cold and hot spots in the new chemical marker-model food system could be clearly recognized and precisely located through a computer vision method. This is the first time that the caramelization reaction was used as a time-temperature indicator in gellan gel model food. This study shows the possibility of using the new chemical marker-model food system for heating pattern determination of the MAPS.  相似文献   

17.
Individual and combined effects of high pressure nitrous oxide (HPN2O), heat, and antimicrobials on the inactivation of Escherichia coli, Listeria innocua, and Bacillus atrophaeus endospores in milk were all evaluated after 20-min treatments. Stand-alone milk treatments with HPN2O (15.2 MPa), heat (45 and 65 °C), or nisin (50 and 150 IU mL?1) resulted in log10 reductions ranging only from 0.1 to 2.1 for E. coli and L. innocua. Combining HPN2O (15.2 MPa) with heat (65 °C) inactivated 6.0 and 5.1 log10 in the vegetative bacteria, respectively. Similarly, reductions of 5.9 and ≥ 6.0 log10 of respective E. coli and L. innocua cells in milk were achieved through a combination of HPN2O (15.2 MPa), heat (65 °C), and nisin (150 IU mL?1). A 2.5 log10 cycle inactivation of spores was obtained by HPN2O, nisin (at both 50 and 150 IU mL?1), and lysozyme (50 μg mL?1) at 85 °C. Combining these processing techniques resulted in significantly greater microbial inactivation (p < 0.05) than the sum of individual reductions from each treatment alone, indicating synergistic effects. HPN2O irrespective of processing temperatures did not cause any occurrence of sub-lethally injured cells or disruption in colloidal stability of milk at 65 and 85 °C (p ≥ 0.05). Color and pH changes in milk following the most demanding treatment conditions were minimal.  相似文献   

18.
This study was designed to characterize a β-glucosidase from Oenococcus oeni 31MBR, a strain widely used in Chinese winemaking. An intracellular β-glucosidase (EC 3.2.1.21) was partially purified using a combination of ammonium sulfate precipitation and chromatographic methods. A single band was obtained in SDS-PAGE electrophoresis, indicating that the enzyme was highly purified and had an estimated molecular mass of 38.9 kDa. The enzyme exhibited highest activity at pH 4.5–5.0. The optimum temperature was 45 °C. Ethanol promoted the activity of this enzyme up to three times. Among the several metal ions assayed, only Mn2+ exhibited a partial promotion effect. The K m and V max values for p-nitrophenyl-β-d-glucopyranoside were 1.05 mmol/L and 0.957 nmol/min, respectively. Up to now, this study contains the first characterization of a native β-glucosidase purified from crude extracts of O. oeni 31MBR.  相似文献   

19.
This study aimed to investigate the partition behaviors of various polar anthocyanins in NaH2PO4/(NH4)2SO4-ethanol aqueous two-phase systems (ATPS) and to extract anthocyanins from Nitraria tangutorun Bobr. and Lycium ruthenicum Murr. Anthocyanins in Hibiscus sabdariffa L., Morus atropurpurea Roxb., N. tangutorun, and L. ruthenicum were profiled using HPLC-ESI-MS/MS and HPLC-DAD, and the partition behaviors of total anthocyanins and main anthocyanins were studied. The partition coefficient of anthocyanins increased with increased hydrophobicity, and low-polarity anthocyanins exhibited a higher preference for the top phase in NaH2PO4/(NH4)2SO4-ethanol ATPS. Additionally, the NaH2PO4-ethanol ATPS gave higher selectivity and total anthocyanin yield than the (NH4)2SO4-ethanol system. Extraction at 65 °C for 45 min and at 45.5 °C for 45 min using 28% NaH2PO4 and 26% ethanol (w/w) led to the recovery of 98.91 ± 0.03% of N. tangutorun anthocyanins (3.62 ± 0.05 mg/g) and 99.84 ± 0.01% of L. ruthenicum anthocyanins (13.16 ± 0.29 mg/g) from raw material; more than 70% of total sugars were removed in a single step. NaH2PO4-ethanol aqueous two-phase extraction is a promising method for extracting anthocyanins from N. tangutorun and L. ruthenicum.  相似文献   

20.
To evaluate the effective implantation of a specific protective culture of Penicillium nalgiovense, a real-time quantitative PCR (qPCR) using SYBR Green methodology was developed. Two specific primers were designed on the basis of the published partial sequences of the Internal Transcribe Spacer (ITS)1–5.8S-ITS2 region of various strains of P. nalgiovense. Using the developed method, a PCR product of 51 bp with a T m value 81.34 °C was detected. T m values of the amplified product allowed specific differentiation between P. nalgiovense and the remaining mould species tested. The developed qPCR method was tested on inoculated slices of dry-cured sausage (‘salchichón’) showing an efficiency of 97.24 %, a R 2 value of 0.99 and a detection limit of P. nalgiovense of 1 log colony-forming units (cfu)/cm2. The qPCR method demonstrated that the protective strain of P. nalgiovense grew and competed against an ochratoxin A (OTA)-producing Penicillium verrucosum strain on commercial dry-cured sausage. This qPCR method provides a specific, accurate and sensitive detection and quantification of P. nalgiovense on dry-cured sausage salchichón in order to estimate its colonization during their processing. This assay will improve strategies to prevent and control unwanted mould colonization and OTA risk in dry-cured meat commodities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号