首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality features of banana puree after high pressure processing (HPP) at 500 MPa for 10 min and thermal pasteurization (TP) at 90 °C for 2 min during 30 days of refrigerated storage were compared in this study. Initial counts in banana puree of greater than 3.80 log colony-forming units (CFU)/g of total aerobic bacteria (TAB) and 3.10 log CFU/g of molds and yeasts (M&Y) were reduced by HPP and TP. TAB were approximately 1.0 CFU/g, and M&Y were less than 0.3 log CFU/g in HPP- and TP-processed puree during storage. HPP and TP did not change pH, titratable acidity (TA), total soluble solids (TSS), lightness (L), and yellowness (b), total phenolic content (TPC), and antioxidant capacity (AC), but HPP raised redness (a) and TP reduced a and ascorbic acid (AA). During storage, L, a, and b in HPP- and TP-processed purees did not change but HPP-processed puree increased pH and decreased TA. After storage, the percentage of TPC and AA was 75.85 and 55.09 % in the HPP group and 96.30 and 68.09 % in the TP group, indicating a significant loss of TPC and a greater loss of AA in HPP-processed puree. The loss of AC agreed with the loss of AA and TPC. HPP preserved particle size distribution and viscosity of purees, whereas TP increased the number of smaller particles and viscosity after processing and in storage. Twenty-six volatiles (18 esters) and 22 volatiles (15 esters) were detected in HPP- and TP-processed purees, and the ester fraction was 69.79 and 52.36 %, respectively. HPP was found to be an effective alternative pasteurization method for preserving the quality of fresh banana puree.  相似文献   

2.
This study evaluated process-induced quality changes in kiwifruit purée of two commercial cultivars (green kiwifruit, “Hayward”, and gold kiwifruit, “Jintao”) treated by equivalent microbial safety-based processing: high-pressure processing (HPP; 600 MPa/3 min) and thermal processing (TP; P 85 °C 8.3 °C = 5min). This comparative study was performed using both targeted, analyzing a priori selected quality attributes (color, sugars, organic acids, and vitamin C) and untargeted headspace-solid phase microextraction-gas chromatography-mass spectrometry approaches, combining multivariate data analysis techniques (partial least squares discriminant analysis and variable identification). HPP provided a better retention of color and vitamin C compared to TP. Sugar and organic acid were less affected by HPP and TP. Methyl and butyl esters were detected at higher amounts in both processed purée, compared to untreated purée. For processed samples, furanones, terpenes, and alcohols were detected at higher amounts after TP and aldehydes were detected at higher amount after HPP. Overall, the quality of HP-treated samples is clearly closer to that of fresh samples compared to thermally treated samples and HP treatment avoids the formation of typical temperature-induced compounds.  相似文献   

3.
This work focused on a litchi-based mixed fruit beverage, comprising of coconut water and lemon juice, mixed in an optimized proportion. Based on preliminary studies, three resistant spoilage enzymes were identified in the beverage, viz. polyphenol oxidase (PPO), peroxidase (POD), and pectin methyl esterase (PME). The response surface methodology (RSM) based on central composite face-centered design (FCCD) screened out PPO as the most resistant enzyme within the high pressure processing (HPP) domain of 200–600 MPa/30–70 °C/0–20 min. A detailed kinetic study was conducted on PPO inactivation within the same HPP domain along with a set of thermal treatments (0.1 MPa/30–70 °C). A synergistic effect of pressure and temperature on PPO inactivation was observed, throughout the HPP domain. However, PPO was almost completely inactivated at 500 MPa/70 °C/20 min. The inactivation order (n) values for PPO were 1.10 and 1.25 for thermal and HPP treatments, respectively. For every 10 °C rise in temperature, the inactivation rate constant (k, Un-1 min?1) increased approximately by 1.5 times, within 50–70 °C (at 0.1 MPa), while a 10-fold increase was obtained in the case of HPP treatments. The activation energy (E a ) and the activation volume (V a), depicting the temperature and pressure dependence of k, was found to decrease slightly, with an increase in pressure and temperature, respectively. The PPO inactivation rate constant was modeled as a function of both temperature and pressure conditions by combining both Arrhenius and Eyring equations.  相似文献   

4.
The aim of this study was to investigate the impact of thermal processing (TP) (90 °C, 90 s), high-pressure processing (HPP) (600 MPa, 46 °C, 5 min), and high-pressure homogenization (HPH) (246 MPa, 99 °C, <1 s) on product quality parameters, specifically carotenoid content, and physicochemical attributes of particle size, color, viscosity, total soluble solids, and pH in tomato juice. Unprocessed tomato juice was used as control. The four major species of carotenoids (lycopene, β-carotene, phytoene, and phytofluene) in tomato juice were analyzed by HPLC. The content of total lycopene, all-trans-lycopene, cis-lycopene isomers,  phytoene, and phytofluene, in TP-, HPP-, and HPH-treated tomato juice did not significantly differ from that in unprocessed (control) juice. Significant reduction in β-carotene content was observed after TP treatment but not after HPP and HPH treatments. HPH significantly reduced tomato juice particle volume mean diameter from ~330 μm in control, HPP-, and TP-treated tomato juices to ~17 μm. A concomitant increase in apparent viscosity was observed in HPH-treated juice versus control. HPH-treated juice had increased redness (a*) and yellowness (b*) than that in control and HPP-treated tomato juices. These results indicate that high-pressure-based technologies (HPP and HPH) can preserve carotenoids as well as improve physicochemical properties.  相似文献   

5.
High hydrostatic pressure (HHP, 600 MPa/1 min) and high temperature short time (HTST, 110 °C/8.6 s) treatments of mango nectars were comparatively evaluated by examining their effects on antioxidant activity, antioxidant compounds, color, and browning degree (BD) immediately after treatments and during storage of 16 weeks at 4 and 25 °C. Steam blanching was used prior to HHP and HTST to inactive endogenous enzymes. Results showed that antioxidant capacity (FRAP assay), L-ascorbic acid, sodium erythorbate, total phenols, total carotenoids, the redness (a*), the yellowness (b*), and BD changed insignificant after HHP or HTST treatment. The lightness (L*) exhibited a significant decrease in HTST-treated mango nectars, while no significant changes in HHP-treated samples. After 16 weeks storage at 4 and 25 °C, there were significant changes in antioxidant activity, antioxidant compounds, color, and BD of mango nectars, whereas differences between HHP- and HTST-treated samples were not significant except for the decrease in L-ascorbic acid and sodium erythorbate, which was more pronounced in HHP-treated samples. Kinetic data of changes in L-ascorbic acid, sodium erythorbate, total phenols, and total carotenoids during storage fitted well into a combined model for both HHP- and HTST-treated samples.Industrial relevanceMango (Mangifera indica L.) is one of the important tropical fruits, and its processed products are of high commercial and economic importance. This research paper presents a comparison on HHP- and HTST-treated mango nectars, and also provides information about storage stability of antioxidant activity, antioxidant compounds, and color of mango nectars. The available data would provide technical support for the evaluation and application of HHP or HTST in the mango nectar industry, and also for the establishment of criteria for commercial production of high quality mango nectars with safety requirements.  相似文献   

6.
The objective of this work was to study chemical and nutritional aspects of different fractions of Prosopis alba. Flours from whole pod, pericarp (pulp) and seeds were obtained. Polyphenols were mainly located in pulp but antioxidant activity was higher in whole pod flour and seeds. In seeds, the fraction with the highest polyphenols and antioxidant activity was the seed coat or testa. Protein content was higher in whole pod flour (5.81 %) than in pulp flour (3.52 %), presenting the seed an appreciable amount 33.6 %. These proteins were composed by monomer subunits of 85, 67, 38, 16 and 14 kDa and no prolamins and anti-tryptic activity were detected. P. alba flours presented high content of soluble sugars, mainly composed by sucrose, and also high amount of insoluble dietary fiber. The major mineral was potassium. The whole pod, due to the contribution of seeds, contained high amount of calcium, magnesium, iron and zinc, all indispensable minerals for human nutrition. Therefore, P. alba flours, mainly containing the seeds, constitute nutritional ingredients for bakery and gluten free products.  相似文献   

7.
Fruits have been the focus of several studies aimed at finding new antioxidant sources for protection against the damage caused by reactive species. In this study, the antioxidant activity and the presence of phenolic compounds in all parts (peel, pulp, and seeds) of Eugenia involucrata DC. fruits were evaluated. DPPH·, ABTS·+, and ORAC methods were used to determine the antioxidant activity, and an UHPLC-MS/MS method was developed for determining the phenolic compounds (gallic, chlorogenic, ferulic, p-coumaric and ellagic acids, quercetin, and myricetin). In the determination of both antioxidant activity and phenolic composition, the efficiency of solvents with different polarities—methanol/H2O (80:20, v/v), ethanol/H2O (80:20, v/v), methanol/acidified water with phosphoric acid pH 3.00 (80:20, v/v), and ethyl acetate—for the extraction of the phenolic compounds, was also evaluated. All parts of E. involucrata fruits showed antioxidant activity, in the range of 36.68 ± 1.44 to 873.87 ± 18.24 μmol TE g?1, being the highest values found in the seeds and peel when more polar extraction solvents were used. Six, five, and three phenolic compounds were identified and quantified in the pulp, peel, and seeds, respectively, with the highest abundance as p-coumaric acid (14 ± 2 mg kg?1) in the pulp, quercetin (47 ± 5 mg kg?1) in the peel, and gallic acid (74 ± 4 mg kg?1) in the seeds, also when more polar solvents were used. Although antioxidant activity methods suggested that the peel and seeds have more antioxidant potential, a wider variety of compounds were determined in the pulp.  相似文献   

8.
9.
In this study, response surface methodology was used to optimize the extraction temperature (25–75 °C) and ethanol concentration (0–70 %, ethanol/water, v/v) to maximize the extraction of total phenolic compounds (TPC) from araticum pulp. The efficiency of the extraction process was monitored over time, and equilibrium conditions were reached between 60–90 min. A second-order polynomial model was adequately fit to the experimental data with an adjusted R 2 of 0.9793 (p < 0.0001) showing that the model could efficiently predict the TPC content. Optimum extraction conditions were ethanol concentration of 46 % (v/v), extraction temperature of 75 °C and extraction time of 90 min. Under the optimum conditions, the araticum pulp showed high TPC content (4.67 g GAE/100 g dw) and also high antioxidant activity in the different assays used (46.56 μg/mL, 683.65 μmol TE/g and 1593.72 μmol TE/g for DPPH IC50, TEAC and T-ORACFL, respectively). From our extraction procedure, we successfully recovered a significantly higher amount of TPC compared to other studies in the literature to date (1.5–22-fold higher). Furthermore, TPC and antioxidant activity were present in the fruit in levels that are difficult to find in other common fruits. These results expose a potential approach for improving human health through consumption of araticum fruit.  相似文献   

10.
Pectinmethylesterase (PME), peroxidase (POD), and polyphenoloxidase (PPO) residual activities (RAs) and physicochemical parameters (pH, total soluble solids (TSS), water activity (aw), viscosity and color) of Tommy Atkins and Manila mango purees (MPs) were evaluated after high hydrostatic pressure (HHP) treatments at 400–550 MPa/0–16 min/34 and 59 °C. HHP treatment applied at 59 °C induced higher enzyme inactivation levels than the treatment applied at 34 °C in both MPs. The lowest RA of PME (26.9–38.6%) and POD (44.7–53%) was achieved in Manila MP treated at 450 MPa/8–16 min/59 °C and 550 MPa/4–16 min/59 °C, respectively. Otherwise, Tommy Atkins puree pressurized at 550 MPa/8–16 min/59 °C had the lowest PPO RA (28.4–34%). A slight decrease in pH and TSS values of both HHP-processed MPs at 34 and 59 °C was observed, whereas the aw remained constant after processing. The viscosity of MPs tended to augment up to 2.1 times due to the application of HHP. No significant changes were observed in color parameters of Tommy Atkins MP, except at 550 MPa and 59 °C where higher yellow index (YI) (122.4?±?3.3) and lower L* (37.3?±?5.3) were obtained compared to the untreated MP. HHP caused an increase in L* values in Manila MP, whereas no clear trend was observed in YI. HHP processing at 550 MPa combined with mild temperature (59 °C) during 8 min could be a feasible treatment to reduce enzymatic activity and preserve fresh-like quality attributes in MP.  相似文献   

11.
The effects of high hydrostatic pressure (HHP) treatments at pressures of 300–600 MPa for 1–20 min and of high-temperature, short-time (HTST) treatment on the inactivation of natural microorganisms in blanched mango pulp (BMP) and unblanched mango pulp (UBMP) were investigated. No yeasts, molds, or aerobic bacteria were detected in BMP or UBMP after HHP treatments at 300 MPa/15 min, 400 MPa/5 min, 500 MPa/2.5 min, and 600 MPa/1 min and HTST treatment at 110 °C/8.6 s. Therefore, these conditions were selected to study the effects of HHP and HTST treatments on pectin methylesterase (PME) activity, water-soluble pectin (WSP) levels, and the rheological characteristics of UBMP and BMP. HHP treatment at a pressure of 600 MPa for 1 min significantly reduced PME activity in UBMP and significantly activated PME in BMP, whereas pressures of 300–500 MPa activated PME regardless of blanching. However, PME activity was reduced by 97 % in UBMP and was completely inactivated in BMP by HTST treatment. WSP levels were significantly decreased by HHP treatment but were increased by HTST treatment in UBMP and BMP. Both HHP and HTST treatments increased the viscosity, storage modulus, and loss modulus of UBMP and BMP. No significant changes in total sugar, total soluble solids, titratable acid, or pH were found after any treatment.  相似文献   

12.
The effectiveness of Allium and Brassica extracts to inhibit the evolution of lipids oxidation in avocado pulp under refrigeration (storage at 4 °C) was studied. Onion, garlic, scallion, white cabbage, cauliflower, and Brussels sprouts extract were tested as preserving agents in refrigerated avocado pulp. Allium extracts promoted almost a 60% retention of the intrinsic anti-radical capacity of the pulps. Considering secondary oxidation effects, extinction coefficient at 270 nm shows that all treated pulps (except those with scallion addition) were acceptable at the 30th storage day (K 270 < 0.22), but they were all significantly less oxidized than the untreated samples (K 270 = 1.8) (P < 0.05). Garlic-treated avocado showed the highest antioxidant effectiveness, based on C=CH cis proportion (I cis = 108.3), while samples with white cabbage extract presented the highest C=CH trans (I trans = 5.7) proportion after 30 days. The PCA method was discriminant enough since 83.6% of the variance was explained by the first two principal components, allowing the samples to be grouped according to storage time and extract type. This study confirmed that the addition of garlic, onion, and cauliflower extracts enhanced lipid antioxidant properties in refrigerated avocado pulps.  相似文献   

13.
Vitis vinifera (variety Tempranillo) grapes were pressurized at 400 MPa by high hydrostatic pressure for 10 min and the effect on wild microbial populations, phenol extraction and wine composition was monitored. After treatment, the grapes were inoculated and fermented with Saccharomyces cerevisiae and several non-Saccharomyces yeasts: Schizosaccharomyces pombe, Torulaspora delbrueckii, Metschnikowia pulcherrima and Lachancea thermotolerans. S. pombe was used as sole fermentative yeast, but T. delbrueckii, M. pulcherrima and L. thermotolerans were used in sequential cultures with S. cerevisiae to completely ferment the sugars. The HHP treatment reduces strongly or eliminates wild microorganisms, especially yeasts, facilitating the growth and development of non-Saccharomyces yeasts. Thus, it helps to get either a better expression of enzymatic activities or metabolites production of non-Saccharomyces affecting wine quality.  相似文献   

14.
15.
Ultrafiltration (UF, 0.05 μm) with a ceramic membrane was combined with high-pressure processing (HPP) at 500 MPa/6 min and high-temperature short time (HTST) at 110 °C/8.6 s to process fresh apple juice. The aim of this study was to compare the effect of UF + HPP and UF + HTST on quality features of fresh apple juice and analyze the quality changes of the juice treated by UF + HPP and stored during 60 days at 4 °C. Applying UF, total plate count (TPC) and yeasts and molds (Y&M) significantly decreased by 0.29 and 0.28 log cycle, total phenols and ascorbic acid decreased by 33.50 and 26.52 %, and antioxidant capacity, using the DPPH and FRAP assay, significantly decreased by 26.40 and 25.37 %. Meanwhile, the juice clarity was 99.75?±?0.07 % and seven aroma compounds were changed. TPC and Y&M in juices treated by UF + HPP and UF + HTST were <1 log cycle. When compared to the juice treated by UF + HTST, the juice treated by UF + HPP showed lower browning degree and higher total phenols and clarity, and retained seven main volatile aroma compounds. Fresh apple juice processed by UF + HPP was microbiologically safe (TPC <1.8 log cycles and Y&M <1 log cycle) during 60 days of storage at 4 °C. The first-order model was a suitable model for all quality parameters of refrigerated fresh apple juice; however, rate constant k of first-order model was between ?0.0157 and 0.0350, showing the quality features of the refrigerated juice was stable.  相似文献   

16.
The water vapor permeance (WVP; g m?2 d?1 Pa?1) of packaging films quantifying the water vapor transfer rate between foods and its surroundings is usually determined in units operating under steady-state conditions that do not necessarily reflect food handling scenarios. This study evaluated the determination of the WVP of a polyethylene (PE) film by steady-state method ASTM F1249-06 using a permeability cell and unsteady-state method ASTM E96/E96M in which 102 vacuum-sealed PE bags containing silica gel were stored (37.8 °C, 75% relative humidity) and weighed over 25 days. Average steady-state WVP (2.935 ± 0.365 × 10?3, n = 4) fell within the 95% quantiles of unsteady-state WVP values (1.818–3.183 × 10?3, n = 2142). Moisture uptake of dehydrated mango stored at 37.8 °C and 75% relative humidity was predicted with WVP values obtained by both methods. Predictions were validated by monitoring over 25 days the weight gain of 100 PE bags with dry mango. Experimental moisture averages during storage fell within one standard deviation of predictions using the unsteady-state WVP (R 2 = 0.974). The same was observed only until day 15 for predictions obtained with the steady-state WVP. Calculations for days 20–25 overestimated the moisture uptake by 6.0–7.2%, resulting in registered R 2 = 0.924. The unsteady-state WVP determination is low-cost, uses large numbers of film samples, and allowed more accurate predictions of dry mango moisture uptake. Knowledge of the moisture uptake controlled by the film WVP is essential when predicting the safety and quality changes limiting the shelf-life of foods.  相似文献   

17.
Non-thermal pasteurization of orange juices using a continuous pressure change technology (PCT) device was investigated on pilot plant scale for the first time. PCT treatment was conducted by pressurizing orange juice and nitrogen at moderately high pressures (P?=?25 or 50 MPa) in a tubular continuous reactor. Abrupt decompression was achieved by a relief valve at the end of the tubular system. As compared to freshly squeezed juice, PCT treatment slightly reduced levels of carotenoids, vitamin C and hesperidin by 19, 5, and 14 %, respectively. Peroxidase was completely inactivated, whereas residual pectin methylesterase activities amounted to 26–27 %. Simultaneously, total aerobic plate counts were substantially reduced by at least 3.4 log10 cfu/mL. The mean volume-weighed particle diameter d 43 was drastically reduced from 652 μm in freshly squeezed juice to 6 and 31 μm at 25 and 50 MPa, respectively. Concomitantly, CIE-L*a*b* color values indicated a brighter and more intense yellow color of PCT-treated juices. While cloud separation in freshly squeezed juice was completed within 3 days, cloud stability in PCT-treated juices was retained for 5 days.  相似文献   

18.
During come-up time (CUT), the time to reach a desired processing pressure, isobaric-isothermal conditions cannot be assumed in the estimation of kinetic parameters for the design of commercial high-pressure processing (HPP) treatments. Since CUT effects on microbial population, enzyme activity, and chemical concentration are often ignored, kinetic models incorporating the non-isobaric and non-isothermal conditions prevailing during CUT were the objective of this work. The analysis of peer-reviewed data on the HPP inactivation of bacteria (counts observations n = 919, 60 survival curves) and bacterial spores (n = 273, 12 curves) showed that a Gompertz model (GMPZ) approach is an effective alternative. The GMPZ parameter A was fixed as the difference between the initial population (log10 N o ) and the lower quantification limit of microbial counts (log10 N lim), while exponential equations were used to describe pressure effects on the lag time (λ) and the maximum inactivation rate (μmax). In low-acid media (pH > 4.5), λ decreased exponentially with pressure, allowing the identification of a theoretical pressure level (P λ) sufficient to initiate microbial inactivation during CUT. The parameter μmax exponentially increased with pressure for all evaluated datasets. Dynamic pressure effects during CUT were simplified by assuming isobaric conditions during CUT (t CUT), allowing to obtain GMPZ parameter estimates using only nonlinear regression (R 2 ~ 0.938, σ 2 = 0.030–0.604). The proposed approach is a simpler, promising tool for a more informative analysis of the kinetics of microbial inactivation by HPP and should be further validated with additional experimental data.  相似文献   

19.
Psidium guajava L. has gained a special attention as health plant due to the presence of phenolic compounds. Box-Behnken design (BBD) has been applied for the extraction of target compounds from guava leaves via sonotrode ultrasound-assisted extraction (UAE). Different extraction times (5, 30, and 55 min), ratios of ethanol/water (50, 75, and 100% (v/v)), and ultrasound (US) power (80, 240, and 400 W) were tested to find their effect on the sum of phenolic compound (SPC), flavonols and flavan-3-ols via HPLC-ESI-QqQ-MS, and antioxidant activity (DPPH and TEAC assays). The best process conditions were as follows: 40 min, 60% ethanol/water (v/v), and 200 W. Established method has been used to extract phenolic compounds in two guava leaves varieties (pyrifera and pomifera). Pyrifera var. showed greater values of the SPC via HPLC-ESI-QqQ-MS (49.7 mg/g leaf dry weight (d.w.)), flavonols (12.51 mg/g d.w.), flavan-3-ols (7.20 mg/g d.w.), individual phenolic compounds, and antioxidant activity (8970 ± 5 and 465 ± 6 μmol Trolox/g leaf d.w, respectively) than pomifera var. Conventional extraction showed lower amounts of phenolic compounds (7.81 ± 0.03 and 4.64 ± 0.01 mg/g leaf d.w. for flavonols and flavan-3ols, respectively) in comparison to the ultrasound-assisted ones.  相似文献   

20.
高压和热处理对芒果浆粒度及水溶性果胶的影响   总被引:1,自引:0,他引:1  
芒果浆黏度影响加工过程中产品输送阻力及产品口感,本研究探讨高压和热处理后芒果浆粒度大小、果胶组成及含量对芒果浆黏度的影响,以期更好地指导芒果浆及相关复配产品的生产。实验分别以新鲜和经热烫处理(1 min)的芒果浆为对象,研究高压(high pressure processing,HPP,400 MPa、5 min和600 MPa、1 min)和高温短时(high-temperature short-time,HTST,110℃、8.6 s)处理后芒果浆粒度、水溶性果胶含量、酯化度、分子质量的变化。结果表明:HPP处理后芒果浆粒度分布、果胶分子质量分布与处理前相比无显著变化,而果胶半乳糖醛酸含量、酯化度均下降,低酯化的果胶易发生交联反应生成稳定的网状结构,导致体系黏度增大;HTST处理后芒果浆粒度分布有增大的趋势,可溶性果胶半乳糖醛酸含量增加,导致体系黏度增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号