首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the changes occurring in the dough after the pre-baking and re-baking steps in the preparation of frozen bread (French rolls) made with whole wheat flour. At the end of each step, the different parts of the rolls (inner crumb, outer crumb, and crust) were characterized and compared with the dough. The temperature profile obtained showed that the opening of the cut height occurred when the inner crumb temperature was close to 40 °C. The moisture content of the inner and outer crumbs remained high even after the two baking steps, overcoming problems cited in literature such as weight loss and drying out of the re-baked bread. The color of these parts was not affected by the re-baking step. Using RVA, infrared spectrometry, and scanning electron microscopy analyses, it was found that right after pre-baking, the starch granules in the crumb and crust were not completely gelatinized and gelatinization continued during the re-baking process. After pre-baking, a few isolated intact starch granules remained in the inner and outer crumbs, and a greater amount was found in the crust, as observed by polarized light microscopy. This behavior was also observed after the re-baking step. The DSC and X-ray diffraction results indicated that the amylose–lipid complex present or formed in the dough was still present in all parts of the rolls after the pre-baking and re-baking steps.  相似文献   

2.
This paper presents a study on the impact of the duration of the baking plateau on staling kinetics in the case of bread crumb made of sourdough; it follows Le-Bail et al. Journal of Cereal Science 50:235–240, (2009)a previous study proposed by Le-Bail et al. Journal of Cereal Science 50:235–240, (2009) on the impact of heating rate during baking on staling parameters. Degassed bread dough was baked in a miniaturized baking system with baking plateau of 0, 4, and 8 min at 98 °C corresponding to a total baking time of 10, 14 and 18 min respectively (simulating from underbaked to fully baked bread). Results showed that longer baking time resulted in the higher Young’s modulus of the baked dough at the end of staling was. It was observed as in Le-Bail et al. Journal of Cereal Science 50:235–240, (2009) that the crystallization of amylopectin occurred a few days before the hardening of the baked crumb during staling. The amount of freezable water decreased during staling (over 10 days period), which was in agreement with the increase in amylopectin crystallites during staling which trap water. The amount of soluble amylose increased with increasing duration of the baking plateau at 98 °C, indicating that for prolonged baking, an increasing amount of amylose is leached outside of the starch granules. This was proposed as an explanation for the higher Young’s modulus of the crumb at the end of staling.  相似文献   

3.
Waxy corn starch pastes (10%) were stored at 5 °C for up to 35 days, and the powder specimens of retrograded starches thus obtained were added to wheat flour for bread baking at a level of 5%. The effect of retrograded starch on the staling of bread was determined. The loaf which contained retrograded waxy corn starch, which was prepared by storing the 10% paste at 5 °C for 7 days, showed an increase in specific volume and the results of the sensory evaluation showed that it was very acceptable. During the storage of bread, the increase in firmness and decrease in degree of gelatinization were suppressed by adding retrograded waxy corn starch. The moisture content of bread crumbs did not relate to firmness. Added retrograded waxy corn starch decreased the final viscosity of flour. The crystalline region of retrograded waxy corn starch used for bread baking included longer chains from amylopectin which in raw starch occurred in the amorphous region.  相似文献   

4.
Resistant starch (RS) is a nutritional ingredient commonly used in bread products as dietary fibre (DF). This ingredient presents similar physiological functions than those imparted by DF, promoting beneficial effects such as the reduction of cholesterol and/or glucose levels on blood. Quality improvement of bread containing RS, with an optimized combination of emulsifiers, will be useful in the development of new and healthy bakery products. The objective of this research was to analyse the effects of different emulsifiers on several quality parameters of dough and bread prepared with wheat flour partially substituted with resistant starch as a dietary fibre. A blend of wheat flour/maize-resistant starch (MRS; 87.5:12.5) with sodium chloride, ascorbic acid, α-amylase, compressed yeast and water was utilized. Emulsifiers were incorporated to formulations in different levels according to a simplex centroid design. The viscoelastic, textural and extensional properties of dough were analysed. Bread quality was evaluated throughout the gelatinization and retrogradation of starch, specific volume of loaves, and texture and firmness of bread crumb. The incorporation of 12.5% (w/w) of MRS to wheat flour caused an increase of 5% in water absorption. Stability decreases markedly (from 9.9 to 2.2 min) and the mixing tolerance index increased (from 79 to 35 UF). The sodium stearoyl lactylate (SSL)–diacetyl tartaric acid esters of monoglycerides (DATEM) mixture increased hardness and resistance to extension on dough, whilst dough containing Polysorbate 80 (PS80) was softer; nevertheless, both types of dough retained less CO2. An optimized concentration of the three emulsifiers (0.24% SSL, 0.18% PS80, 0.08% DATEM, w/w) was obtained by surface response methodology. The bread prepared with this combination of emulsifiers presented a considerable specific volume with a very soft crumb.  相似文献   

5.
The effect of maize resistant starch (MRS) and transglutaminase (TG) on rheological and thermal properties of pan bread dough was studied. The MRS was added as an alternative to increase the fiber ingestion while TG supplies the gluten dilution, catalyzing protein bonds. A second order central composite design (22) with three central and four star points was applied, and the results were compared to those of pan bread dough prepared without MRS and TG, as control. The presence of MRS and TG significantly (P?n index (degree of strain hardening). Only starch gelatinization enthalpy significantly changed (P?相似文献   

6.
The effect of flour extraction rate and baking on thiamine (vitamin B1) and riboflavin (vitamin B2) content and antioxidant capacity of traditional ginger cake was studied and then compared to white wheat bread. Ginger cake was formulated either with whole-grain (100% extraction rate) or with brown (92% extraction rate) rye flour and baked at 180 °C for 18 min. The antioxidant capacity was evaluated in terms of radical scavenging activity against peroxyl (ROO·) and superoxide anion radicals (O 2 ·? ). Thiamine content in rye doughs (F-100% and F-92%) was found to be 38% lower when compared to wheat dough. In contrast, whole-grain and brown rye doughs exhibited an almost fourfold higher riboflavin content than wheat dough. Rye dough baking led to reductions in thiamine (from 53 to 65%) and riboflavin (from 69 to 71%) contents. Likewise, thiamine and riboflavin contents in wheat dough were also reduced (56 and 10%, respectively) after baking; however, ginger cake with whole-grain rye flour exhibited significantly higher thiamine and riboflavin contents. Rye doughs and ginger cakes showed higher scavenging activities against ROO· radicals when compared to that of wheat dough and bread. Thus, baking significantly enhanced ROO· scavenging properties of ginger cakes while only a slight increase was observed in wheat bread. In contrary, baking gave rise to a decrease in SOD-like activity both in ginger cake or wheat bread. Our findings suggest that formulation with whole-grain rye flour can potentially increase B1 and B2 vitamin contents as well as the ROO· scavenging capacity of traditional ginger cake.  相似文献   

7.
In order to understand starch changes induced by baking process at different locations of a slice of sandwich bread, namely the top, center, and bottom locations, starch was isolated from crumbs baked at two heating rates ( 6.31 and 4.67 °C/min) and evaluated for their pasting properties, gelatinization parameters, and iodine complexing ability. Results showed that starch isolated from the bottom and the center crumbs baked at higher heating rate presented the significant higher final viscosity and higher setback than that isolated from crumbs baked at lower heating rate. Thermal analysis showed that starch isolated from the center crumb of the bread slice presented the lower enthalpy value of gelatinization, confirming that these samples underwent higher heat-moisture treatment during the baking process. After equilibration at 0.97 aw, the exposure to iodine vapor changed the X-ray diffraction intensity of starch samples. Polarized light microscopy showed that heating affects starch granule morphology due to the higher starch chain mobility and the higher granular swelling when breads were baked at lower heating rate.  相似文献   

8.
本试验就木糖醇对面团特性及面包品质影响进行了研究.结果表明,木糖醇可降低面团的吸水率,延长面团的形成时间、稳定时间;适量添加可增加面团的拉伸能量、延伸度和拉伸阻力;添加木糖醇可显著减少小麦粉的峰值黏度、最低黏度、衰减值、最终黏度、回生值和峰值时间,有效降低淀粉老化速度;添加适量木糖醇可有效保持面包体积,降低面包的硬度,增加面包的含水量,改善面包的焙烤特性,延长其货架期.综合分析,在本试验条件下,木糖醇的添加量不宜超过16%.  相似文献   

9.
The adhesion of wheat dough affects many aspects of industrial baking, from kneading raw dough to the final baking process. In this work, an original method was developed to study the effect of temperature on the adhesive properties of bread dough in contact with a solid surface during heating. Using this approach, it will be possible to understand the factors that affect adhesion between dough and a baking surface, which will aid in developing methods to prevent dough from sticking. Overall, the dough's adhesion to a hydrophobic surface globally decreased with an increase in temperature from 35 to 97 °C, with the exception of the temperature range between 55 and 70 °C, in which the energy of adhesion increased slightly. Under these circumstances, the evolution of adhesion was primarily shaped by the rheological properties of the dough. However, when we used a solid surface with different surface energy, the results changed significantly, which suggests that the mechanisms of adhesion during heating are governed by a balance between the interfacial and bulk properties of the heated dough. The overall decrease in the adhesion of the dough to the hydrophobic glass surface may be explained by a decrease in dough hydrophobicity due to structural and chemical changes in the dough.  相似文献   

10.
Starting with a typical baker's dough, a model system was constructed in order to examine whether moisture re-distributed itself between the two principal components, gluten and starch, of crumb during ageing. Separation of the components of dough was achieved by ultra-centrifugation. It was estimated that up to 30% of the moisture associated with the gluten fraction, migrated to the starch during 120 h of storage of the baked system at 25°c. The rate of migration decreased approximately exponentially with time. Moisture from the gluten was also found to migrate to the starch during baking, but at an accelerated rate. The rate of moisture migration in the model system, both at 100 and 25°c, was consistent with a diffusion-controlled process involving migration of the gluten-released moisture to the gluten-starch interface. Experimental results show that staling of bread involves (in addition to the generally accepted retrogradation of the starch) an irreversible modification in the water structure of the gluten, leading to the formation of labile water, which becomes available for absorption by the incompletely gelatinised starch. Since the gluten forms the continuous matrix of the crumb, the modification results in a rigidification or firming process.  相似文献   

11.
藜麦粉对冷冻面团特性及其面包品质的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
将藜麦和小麦粉按一定比例混合,用快速粘度分析法测定混合粉糊化特性,流变仪测定了冻藏过程中小麦-藜麦冷冻面团的流变学特性,核磁共振法测定面团中水分迁移,并测定其发酵体积变化,最后分析了冷冻面团组织状态与产品品质的关系。结果表明:藜麦粉对冷冻面团及面包的品质均有改善。藜麦粉降低了混合粉体系的糊化粘度和崩解值。冻藏后,冷冻面团的弹性模量和粘性模量增加,小麦粉冷冻面团损耗角正切值增加了4.73%,添加量为5%时冷冻面团损耗角正切值仅增加0.41%;小麦冷冻面团自由水上升了3.90%,藜麦添加后仅上升2.40%,可见藜麦粉能冷冻面团降低水分迁移程度;同时,添加藜麦粉能维持面团面筋网络结构的完整性,发酵体积由26.42 mL/h增大到29.17 mL/h。不同添加量的藜麦粉对面团及面包的品质改善程度不同,最适添加量为10%,烘烤后面包比容为3.08 mL/g,硬度为2803.48 g。本研究可为开发藜麦冷冻面团提供理论基础,在藜麦新产品开发方面具有重要的指导意义。  相似文献   

12.
Rheological properties of dough and bread quality of frozen dough-bread containing 18.4% of hydroxypropylated (HTS), acetylated (ATS), and phosphorylated cross-linked (PTS) tapioca starch with different degrees of modification and 1.6% of dried powdered gluten were compared to the same amount of native tapioca starch (NTS) or wheat flour-bread. Doughs substituted with native or modified tapioca starches had the same mixing tolerance as 100% wheat flour. The dough was frozen and stored for 1 week at −18°C, and thawed (one freeze-cycle). The amount of freezable water in the dough substituted with native or modified tapioca starches was not significantly different from that of wheat flour. Frozen dough-bread substituted with highly modified HTS (degree of substitution; DS 0.09–0.11) retarded bread staling, while lowly modified HTS (DS 0.06–0.07) or ATS (DS 0.02–0.04), and PTS (0.004–0.020% phosphoryl content) substitution fastened bread staling as compared with frozen dough-bread baked from wheat flour. The breadcrumbs containing HTS and ATS felt tacky, whereas the bread containing PTS was dry feel. HTS and ATS swelled and collapsed easily during heating, while PTS was difficult to swell and disperse as compared with NTS, therefore the gelatinization properties seemed to affect the texture of bread. Breadcrumb containing HTS showed small firmness during storage, and highly modified HTS-h (DS 0.1) was the smallest. This means highly hydroxypropylated tapioca starch significantly retards bread staling. Staling properties and texture of frozen dough-bread with various tapioca starches were the same as conventional bread baked with the same amount of tapioca starches. These results suggest that a one freeze–thaw cycle and a 1-week frozen period do not change characteristics of starch, gelatinization and retrogradation properties as compared with the conventional method, and the highly modified HTS-h is prominent anti-staling food-stuff in frozen dough.  相似文献   

13.
The occurrence of the emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) has been reported in Fusarium-infected cereals. To study the effect of sourdough processing and baking on ENN B, ENN B1, and BEA concentrations, a recently developed stable isotope dilution assay for these mycotoxins was used. After milling of wheat and rye grains naturally contaminated with ENN B and ENN B1, approximately 70–82 % of the two ENNs were found in the bran fraction and the rest remained in flour. BEA was added to flour before sourdough fermentation. In an experiment on a microscale, dough was fermented for 24 h at 30 or 40 °C, which reduced part of the ENNs and BEA in particular at 40 °C. On a standard scale, mixing, resting, and proofing of the bread dough resulted in 13–19 % reduction of the ENNs compared with flour, but in no significant change of BEA. The final baking at 200 °C for 25 min led to a further decrease of the ENNs and BEA, ranging from 9 to 28 % compared with fermented dough. In case of rye sourdough bread, greater reductions of ENNs were found in crust than in crumb. For both wheat and rye flours, overall 25–41 % of ENN B, ENN B1, and BEA were reduced during the whole sourdough bread-making process.  相似文献   

14.
液体大麦精在面包烘焙中的应用   总被引:3,自引:1,他引:2  
研究了液体大麦精的不同添加量对面团流变学特性和面包烘焙品质的影响,并进行了面包的贮藏试验,得出了大麦精面包中大麦精的最适添加量.研究发现,液体大麦精的添加会改变面团的流变学性质,对面包的理化指标有所改善.经过感官品质分析可得出:液体大麦精的添加在一定程度上提高了面包的口感,改善了面包的风味和内部结构.同时,面包添加液体大麦精,延缓了面包的陈化速率,延长了面包的保质期.试验结果显示,大麦精面包中大麦精的最适添加量为蔗糖替代量的60%.  相似文献   

15.
In this research, the effects of a low mixing temperature on dough rheology and the quality of bread were investigated. In the experiments, strong flour samples (Type 550), 1.5% salt, 3% of yeast and 1% additive mixture were used and dough samples were mixed at 17 °C (low temperature), 23 °C (control) and 30 °C (high temperature). Five different periods (0, 30, 60, 90 and 120 min) were applied at the bulk fermentation stage. At the final proofing stage, the dough was fermented until it reached a constant height. It was determined that almost every bread from dough samples mixed at 17 °C resulted in not only the highest bread volume and bread weight, but also the best texture, elasticity and crumb structure. The results of dough samples mixed at 23 °C were worse than those of dough samples mixed at 17 °C. The worst results were obtained from dough samples mixed at 30 °C (high temperature). As a result, it may be concluded that the quality of bread from dough samples mixed at low temperature (17 °C) is superior to those from dough samples mixed at the higher temperatures. Besides these findings, it may also be stated that prolonging the period of bulk fermentation in dough samples mixed at 17 °C positively develops baking performances.  相似文献   

16.
将发酵麦麸作为功能配料用于高膳食纤维面包面团制作,采用化学分析、高效液相色谱及离子色谱法分析麦麸发酵、面包制作过程及面包中阿拉伯木聚糖溶解性和酚类化合物释放。结果表明:随着发酵时间延长,麦麸中水溶性阿拉伯木聚糖、游离酚及阿魏酸含量逐渐增加。发酵处理后,麦麸中游离阿拉伯糖、葡萄糖和果糖含量增加,水溶性阿拉伯木聚糖含量显著提高,分支度显著下降(P<0.05)。面包搅拌、醒发及烘焙过程中,阿拉伯木聚糖不断溶解,酚类化合物持续释放;富含发酵麦麸的面包中水溶性阿拉伯木聚糖含量及分支度更高。模拟肠、胃消化后,富含发酵麦麸的面包中游离酚和阿魏酸含量更高,且吸收效果好。此外,发酵麦麸显著提高了面包的抗氧化活性。  相似文献   

17.
Although much research has been conducted on wheat flour dough rheology, the principal focus has been the role of the protein fraction. Starch is the main component of flour and plays a key role in dough dynamic properties, particularly during heating. This study assesses the effect of two different waxy flours, a durum and a bread wheat, and their blends with commercial bakers' flour on dough rheology during heating with a concurrent investigation into baking performance. Both waxy flour blends produced similar effects on dough rheological behaviour despite differences in protein content, acting to delay gelatinisation and reduce storage modulus. The main effects in bread were to increase loaf expansion during baking and reduce loaf firmness. It is postulated these effects are largely water mediated, with the higher swelling ability of the waxy starch granules reducing overall water availability and driving complete gelatinisation to higher temperatures.  相似文献   

18.
Effects of Waxy Wheat Flour and Water on Frozen Dough and Bread Properties   总被引:1,自引:0,他引:1  
ABSTRACT:  The quality of bread made from frozen dough is diminished by changes that occur during freezing. New cultivars of waxy wheat flour (WWF), containing less than 2% amylose, offer unique properties for the production of baked products. In this study, dough properties and bread quality were investigated at various levels of WWF (0% to 45% flour weight) and water (55% to 65%). Dough stickiness increased with higher levels of WWF and water. During frozen storage, dough with greater WWF and lower water had less change in stickiness. Maximum resistance to extension (MRE) decreased with higher WWF and water. Dough with greater WWF and less water had less change in extensibility after frozen storage. Dough with greater WWF and water was more extensible. Nuclear magnetic resonance (NMR) studies showed that frozen dough with higher WWF content had lower transverse relaxation ( T 2) time of 9 to 11ms. After frozen storage, dough with higher WWF still showed lower T 2. Dough with 15% WWF had higher yeast activity. Bread made from 15% and 30% WWF had higher volume in bread made from unfrozen and frozen dough. Bread firmness decreased with higher amounts of WWF and water. This research demonstrated that specific combinations of WWF and water produced a better quality of frozen dough and bread.  相似文献   

19.
新型保健食品——土豆面包的研制   总被引:4,自引:1,他引:4  
研究了用土豆淀粉生产面包的较佳原料配比方案,分析了土豆淀粉对面包品质和面团品质的影响规律。结果表明,以土豆淀粉为主生产土豆面包是可行的,其生产用原料的较佳配比为:土豆淀粉60%、谷朊粉18%、小麦面粉22%。土豆淀粉的添加比例与面包的体积显著负相关;当添加比例小于50%时,随着土豆淀粉的添加比例的增大,面包的其它表观性状均有不同程度的好转。土豆淀粉的加入对面团品质影响较大:随着土豆淀粉比例的增大,评价值增大,吸水率下降,软化度先升后降。当土豆淀粉添加比例达90%时,不能形成面团。  相似文献   

20.
Lipid fractions and starch- and protein-lipid binding of single and blended oat, rye, buckwheat and wheat flour, dough and bread matrices were investigated, and results correlated with the functional and nutritional properties of the grain matrices during mixing and baking. Non-starch lipid was the most prominent fraction in terms of absolute content and as a percentage of total lipids. Free lipids, starch lipids and bound lipids were, respectively, the major, intermediate and minor lipid fractions in flours, doughs and breads. Great differences in total lipid content due to sampling result in divergences amongst lipid fraction content and distribution, especially for starch and bound lipid fractions. Lipids bound to proteins during dough mixing are translocated and bound to starch during baking. In blended samples, the higher fibre content seems to provoke a reduction of the lipid–protein and lipid–starch linkages due to interactions between fibres and endogenous biopolymers. Starch lipid showed the most significant correlations with parameters related to dough and bread performance during breadmaking, especially over the mixing step. Valuable fresh bread functional characteristics, such as high specific volume and high sensory score for softness and overall acceptability, correspond to a starch lipid’s increase due to mixing. The higher the free and starch lipids decrease by reason of temperature treatment—baking—the larger the starch hydrolysis and the higher β-glucans and total dietary fibre contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号