首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sterols are not found inTetrahymena pyriformis when this protozoan is grown in a medium free from exogenous sterols; instead, the principal solid alcohol that can be isolated from the organism is tetrahymanol. a pentacyclic triterpenoid alcohol with an unusual structure. The biosynthesis of tetrahymanol has been shown by appropriate labeling studies to involve a direct, nonoxidative, proton-initiated cyclization of squalene rather than the more commonly found type of mechanism involving squalene 2,3-oxide as an intermediate. In contrast, whenT. pyriformis is incubated with any one of a wide variety of added sterols, the biosynthesis of tetrahymanol is inhibited and the added sterol is accumulated by the organism and, in most cases, is converted metabolically into one or more other sterols. Four different types of transformation have been observed: the introduction of Δ5, Δ7 and Δ22 double bonds, and the removal of ethyl groups, but not methyl groups, from C-24. One of 12 papers to be published from the “Sterol Symposium” presented at the AOCS Meeting, New Orleans, April 1970.  相似文献   

2.
WhenChlorella emersonii, a green alga, was cultured in the presence of 20 ppm AY-9944, a number of sterols accumulated which appear to be intermediates of sterol biosynthesis in this organism. The sterols isolated include 14α-methyl-ergost-8-en-3β-ol, 14α-methyl 24S-stigmast-8-en-3β-ol, 14α-methyl ergosta-8,24(28)-dien-3β-ol and 4α, 14α-dimethyl 24S-stigmast-8-en-3β-ol. Smaller quantities of several other sterols were found in addition to the normally occurring Δ7, chondrillasterol and Δ7. Control cultures were found to contain, in addition to the normally occurring sterols, smaller quantities of most of the sterols isolated from AY-9944 inhibited cultures. AY-9944 is a specific inhibitor of Δ7 in cholesterol biosynthesis in animals. However, sinceC. emersonii terminates sterol biosynthesis one step prior to the Δ7 step, AY-9944 apparently inhibits sterol biosynthesis prior to this step in this organism. The accumulation of 14α-methyl sterols in treated cultures suggests that AY-9944 is an effective inhibitor of the 14α-methyl removal inC. emersonii. Scientific Article No. A1865, Contribution No. 4775 of the Maryland Agricultural Experiment Station.  相似文献   

3.
The basis of the growth requirement ofParamecium for one of several structurally similar phytosterols is not known. Previous research has indicated that selective esterification of only growth-promoting sterols may be a key. In this study, it was found that under certain conditions sterols that fail to support growth (e.g., cholesterol) can be esterified in large amounts inParamecium. We found no compelling evidence to support the hypothesis that steryl esters serve a specialized role in the fatty acid metabolism of the cell. Octadecenoic acid, essential for cell growth, was the major fatty acid in both steryl esters and triglycerides. It was also shown thatP. tetraurelia can dehydrogenate Δ0 and Δ7, as well as Δ5-3β-hydroxy sterols, to yield the conjugated 5,7-diene derivative. These results indicate the presence of a Δ5, in addition to a Δ7, desaturase of the sterol nucleus in this ciliate. Two C24 α-ethyl sterols, Δ22-stigmasterol (Δ22) and stigmastanol (Δ0), were shown for the first time to promote growth. Finally, we found that non-growth-promoting sterols may compose a high percentage of the free sterols of the surface membrane without adversely affecting cell growth or viability. These data support the conclusion that the growth requirement for select phytosterols inParamecium does not involve the structural or functional role of “bulk” sterols in cell membranes.  相似文献   

4.
From the sterol fraction of seed oil from commercialCucurbita moschata Dutch (“calabacita”) Δ5 and Δ7 sterols having saturated and unsaturated side chain were isolated by chromatographic procedures and characterized by spectroscopic (1H and13C-nuclear magnetic resonance, mass spectrometry) methods. The main components were identified as 24S-ethyl 5α-cholesta-7,22E-dien-3β-ol (α-spinasterol); 24S-ethyl 5α-cholesta-7,22E, 25-trien-3β-ol (25-dehydrochondrillasterol); 24S-ethyl 5α-cholesta-7, 25-dien-3β-ol; 24R-ethylcholesta-7-en-3β-ol (Δ7-stigmastenol) and 24-ethyl-cholesta-7, 24(28)-dien-3β-ol (Δ7,24(28)-stigmastadienol).Lipids 31, 1205–1208 (1996).  相似文献   

5.
The metabolism of 4 dietary 24-alkylsterols was investigated in the free-living nematodeCaenorhabditis elegans. The major unesterified sterols ofC. elegans in media supplemented with either campesterol, 22-dihydrobrassicasterol or stigmasterol included cholesta-5,7-dienol, cholesterol, cholest-7-enol, and 4α-methylcholest-8(14)-enol. Dietary stigmastanol yielded cholest-7-enol, cholestanol, cholest-8(14)-enol, and 4α-methylcholest-8(14)-enol as major unesterified sterols. Esterified sterols comprised less than 22% of the total sterol. Removal of a C-24 ethyl substituent of sterols was neither hindered by the presence of a Δ22-bond in the sterol side chain nor was it depedent on unsaturation in ring B of the steroid nucleus.C. elegans reduced a Δ22-bond during its metabolism of stigmasterol; it did not introduce a Δ22-bond during stigmastanol metabolism.C. elegans was capable of removing a C-24 methyl substituent regardless of its stereochemical orientation. Metabolic processes involving the steroid ring system of cholesterol (C-7 dehydrogenation, Δ5-bond, 4α-methylation, Δ8(14)-isomerization inC. elegans were not hindered by the presence of a 24-methyl group; various 24-methylsterol metabolites from campesterol were detected, mostly 24-methylcholesta-5,7-dienol. In contrast, no 24-ethylsterol metabolites from the dietary ethylsterols were found. More dietary 24-methylsterol remained unmetabolized than did dietary 24-ethylsterol. A 24α-ethyl group and a 24β-methyl group were dealkylated to a greater extent byC. elegans than was a 24α-methyl group, perhaps reflecting the substrate specificity of the dealkylation enzyme system, or suggesting different enzymes altogether.  相似文献   

6.
Pavlova gyrans, a unicellular alga of interest as food for oysters, was cultured axenically and examined for sterol composition. Desmethyl monohydroxy sterols, which are frequently seen in algae, made up 40% of the total sterols and were observed primarily in the free sterol fraction. The principal sterols of this group were 5-ergostenol, poriferasterol, and clionasterol, as well as some poriferast-22-enol and poriferastanol. Several “methyl” sterols with unusual structures made up 27% of the total sterols. The principal “methyl sterols” were 4α-methyl ergostanol, 4α-methyl poriferastanol, and 4α-methyl poriferast-22-enol. Methyl sterols were found primarily in the ester fraction. Also observed was a new class of dihydroxysterols composing 33% of the total sterols. These sterols are structurally related to the methyl and desmethyl sterols ofPavlova but contain an extra nuclear hydroxyl which can be acetylated when present on a desmethyl sterol, but which is nonreactive with acetic anhydride in 4α-methyl sterols. None of these sterols were observed in ester form but are concentrated in the acid-hydrolyzable, bound fraction. The unique nature of these sterols suggests potential taxonomic utility. Based on a paper presented at the Symposium on Plant and Fungal Sterols: Biosynthesis, Metabolism and Function, held at the AOCS Annual Meeting, Baltimore, MD, April 1990.  相似文献   

7.
WhenChlorella ellipsoidea was grown in the presence of 4 ppm AY-9944, complete inhibition of Δ5-sterol biosynthesis was achieved. However total sterol production remained unaltered. As a result a number of sterols accumulated that appear to be intermediates in sterol biosynthesis. These sterols were described and identified as (24S)-5α-ergost-8(9)-en3β-ol, (24S)-5α-stigmast-8(9)-en-3β-ol, 4α-methyl-(24S)-5α-ergosta-8, 14-dien-3β-ol, 4α-methyl-(24S)-5α-stigmasta-8, 14-dien-3β-ol, 4α-methyl-(24S)-5α-ergost-8(9)-en-3β-ol and (24S)-4α-methyl-5α-stigmast-8(9)-en-3β-ol. The occurrence of these sterols inChlorella ellipsoidea is the first time they have been noted in biological material. The accumulation of these sterols in treated cultures indicates that AY-9944 is an extremely effective inhibitor of the Δ8→Δ7 isomerase and the Δ14 reductase of these plants. The occurrence of small amounts of other sterols in treated cultures has led to a proposed pathway for thebiosynthesis of sterols inChlorella ellipsoidea. Scientific Article No. A1775, Contribution No. 4565 of the Maryland Agricultural Experiment Station.  相似文献   

8.
Brooks CJ  Horning EC  Young JS 《Lipids》1968,3(5):391-402
The utility of combined gas chromatography-mass spectrometry in the analysis and characterization of sterols has been explored. Methylene unit (MU) values and principal mass spectrometric data are presented for trimethylsilyl ethers of 28 sterols, including the major natural sterols. The diagnostic value of the fragmentation of trimethylsilyl ethers of Δ5-3 β-hydroxysteroids has been confirmed. Characteristic fragmentations of Δ4-3 β-trimethylsilyloxysteroids, and of Δ5,7-3 β-trimethylsilyloxysteroids were also found. Location of side-chain hydroxyl groups is facilitated by the α-cleavages typical of the trimethylsilyl ethers. Fragmentations of saturated sterols, and of Δ7, Δ8(9) and Δ(14) stenols, are less influenced by trimethylsilyl ether formation, but the derivatives still afford satisfactory mass spectra. The combination of gas chromatographic and mass spectrometric information allows positive identification of any of the sterols examined, whereas application of either technique alone may give inconclusive results.  相似文献   

9.
Heliothis zea (corn earworm), an insect that fails to synthesize sterols de novo, was reared on an artificial diet treated with 18 different sterol supplements. Larvea did not develop on a sterol-less medium. Δ5-Sterols with a hydrogen atom, a methylene group, an E-or Z-ethylidene group, or an α- or β-ethyl group (cholesterol, ostreasterol, isofucosterol, fucosterol, sitosterol, and clionasterol, respectively) at position C-24, and Δ5-sterols doubly substituted in the side chain at C-24 with an α-ethyl group and at C-22 with a double bond (stigmasterol) supported normal larval growth to late-sixth instar (prepupal: maturity). The major sterol isolated from each of these sterol treatments was cholesterol, suggesting that H. zea operates a typical 24-dealkylation pathway. The sterol requirement of H. zea could not be met satisfactorily by derivatives of 3β-cholestanol with a 9β, 19-cyclopropyl group, gem dimethyl group at C-4, a Δ5,7-bond or Δ8-bond, or by side-chain modified sterols that possessed a Δ25(27)-24β-ethyl group, Δ23(24)-24-methyl group, or 24-ethyl group, or Δ24(25)-24-methyl or 24-ethyl group. The major sterol recovered from the larvae (albeit developmentally arrested larvae) treated with a nonutilizable sterol was the test compound. Sterol absorption was related to the degree of sterol utilization. The most effective sterols absorbed by the insect ranged from 27 to 66 μg per insect, whereas the least effective sterols absorbed by the insect ranged from 0.6 to 6 μg per insect. Competition experiments using different proportions of cholesterol and 24-dihydrolanosterol (from 9:1 to 1:9 mixtures) indicated that abnormal development of H. zea may be induced on less than a 1 to 1 mixture of utilizable (cholesterol) to nonutilizable (24-dihydrolanosterol) sterols. The results demonstrate new structural requirements for sterol utilization and metabolism by insects, particularly with respect to the position of double bonds in the side chain and functionalization in the nucleus. The novel sterol specificities observed in this study appear to be associated with the dual role of sterols as membrane inserts (nonmetabolic) and as precursors to the ecdysteroids (metabolic).  相似文献   

10.
The structure of a new sterol isolated fromMusa sapientum has been shown by chemical and spectroscopic methods to be (24S)-14α,24-dimethyl-9α,19-cyclo-5α-cholest-25-en-3β-ol. In addition, several known (24S)-24-methyl-Δ25-sterols, their 24-methylene isomers and other sterols (4,4-dimethyl-, 4α-methyl- and 4-demethyl-sterols) together with 3-oxo-4α-methylsteroids were isolated from the plant and identified. The biogenetic implication of these sterols and 3-oxosteroids is discussed.  相似文献   

11.
Pavlova gyrans andP. lutheri were cultured, and the dihydroxysterols were isolated from the free sterol and the polar sterol fractions. Four dihydroxysterols were detected in amounts greater than 1% of total sterol by gas chromatography and were analyzed by gas chromatography/mass spectrometry. The two principal sterols were isolated by chromatography on alumina followed by hydrophobic Sephadex column chromatography. The two sterols appeared to differ by having either a methyl or an ethyl group at C−24; they were termed “methylpavlovol” and “ethylpavlovol.” Analysis by 400 MHz nuclear magnetic resonance showed that methylpavlovol is 4α,24β-dimethylcholestan-3β,4β-diol and ethylpavlovol is 4α-methyl,24β-ethylcholestan-3β,4β-diol. The 4α-methyl,4β-hydroxy configuration has not been observed previously in a natural sterol. Dihydroxysterols make up approximately one-third of the total sterols in thesePavlova species. Neither the biosynthetic origin of these dihydroxysterols nor their role in the biochemistry ofPavlova is known.  相似文献   

12.
Cis andtrans-22-dehydrocholesteryl acetates andcis andtrans-22-cholesten-3β-yl acetates were prepared and compared to Δ22-phytosteryl acetates by titration with dibromopyridine sulfate. The cholesterol derivatives absorbed close to the theoretical quantity of bromine (1 Br2 per double bond), whereas the Δ22-C24-alkylated sterols consumed 0.14 to 0.23 Br2 in excess of the calculated values. This excess is attributed to the formation of additional unsaturation during bromination. Δ7 and Δ8(14)-sterols consume more than 2 and 3 moles Br2, respectively, which indicates that at least one or two new double bonds are formed in these molecules during the bromination step. Arizona Agricultural Experiment Station Journal Article No. 2664.  相似文献   

13.
Sterol compositions of seeds and mature plants of family cucurbitaceae   总被引:1,自引:0,他引:1  
The sterol fractions of the unsaponifiable lipids obtained from 32 seed and mature plant (leaves and stems, pericarp of the fruit, and roots) materials from the 12 generaApodanthera, Benincasa, Citrullus, Coccinea, Cucumis, Cucurbita, Gynostemma, Lagenaria, Luffa, Momordica, Sechium andTrichosanthes, of the family Cucurbitaceae were investigated by gas liquid chromatography (GLC) on an OV-17 glass capillary column. Among the 23 sterols with Δ5-, Δ7- and Δ8-skeletons identified by GLC, the Δ7-sterols were found to be the major sterols of most of the Cucurbitaceae investigated. The seed materials contained 24-ethyl-Δ7-sterols possessing Δ25-bonds, i.e. 24-ethylcholesta-7,25-dienol and 24-ethylcholesta-7,22,25-trienol, whereas the mature plant materials contained 24-ethyl-Δ7sterols without a Δ25-bond, i.e. 24-ethylcholest-7-enol and 24-ethylcholesta-7,22-dienol, as the most predominant sterols, with a few exceptions. The isolation and identification of 24α-ethylcholesta-8(14),22-dienol from the aerial parts ofCucumis sativus also is described.  相似文献   

14.
The major sterols of the seeds ofBenincasa cerifera, Cucumis sativus, Cucurbita maxima, C. pepo andTrichosanthes japonica and of the mature plant tissues (leaves and stems) ofCitrullus battich, Cucumis sativus andGynostemma pentaphyllum of the family Cucurbitaceae were 24-ethyl-Δ7-sterols which were accompanied by small amounts of saturated and Δ5-and Δ8-sterols. The 24-ethyl-Δ7,227,25(27) and Δ7,22,25(27)-sterols constituted the predominant sterols for the seed materials, whereas the 24-ethyl-Δ7 and Δ7,22-sterols were the major ones for the mature plant tissues. The configurations of C-24 of the alkylsterols were examined by high resolution1H NMR and13C NMR spectroscopy. Most of the 24-methyl- and 24-ethylsterols examined which lack a Δ25(27)-bond (i.e., 24-methyl-, 24-methyl-Δ22-, 24-ethyl- and 24-ethyl-Δ22 sterols) were shown to occur as the C-24 epimeric mixtures in which the 24α-epimers predominated in most cases. The 24-ethylsterols which possess a Δ25(27) (i.e., 24-ethyl-Δ25(27)-and 24-ethyl-Δ7,22,25(27)-sterols) were, on the other hand, composed of only 24β-epimers. The Δ8-sterols identified and characterized were four 24-ethyl-sterols: 24α-and 24β-ethyl-5α-cholesta-8,22-dien-3β-ol, 24β-ethyl-5α-cholesta-8,25(27)-dien-3β-ol and 24β-ethyl-5α-cholesta-8,22,25(27)-trien-3β-ol. This seems to be the first case of the detection of Δ8-sterols lacking a 4-methyl group in higher plants, and among the four Δ8-sterols the latter two are considered to be new sterols. The probable biogenetic role of the Δ8-sterols and the possible biosynthetic pathways leading to the 24α- and 24β-alkylsterols in Cucurbitaceae are discussed.  相似文献   

15.
Martin MM  Carls GA 《Lipids》1968,3(3):256-259
Sterols constitute 1.95% of the total extractable lipids ofAcheta domesticus L., of which 18% are esterified. The free sterols consist of cholestane-3β-ol (0.5%), Δ5-cholestene-3β-ol (83.5%), Δ7-cholestene-3β-ol (2.3%) Δ5,7-cholestadiene-3β-ol (3%), Δ5,22-cholestadiene-3β-ol (4%), Δ5,7,22-cholestatriene-3β-ol (0.2%), campestane-3β-ol (0.03%), Δ5-campestene-3β-ol (1.0%), Δ7-campestene-3β-ol (trace), Δ5,7-campestadiene-3β-ol (0.2%), stigmastane-3β-ol (0.09%), Δ5-stigmastene-3β-ol (2.1%), Δ7-stigmastene-3β-ol (0.04%), Δ5,7-stigmastadiene-3β-ol (0.4%), Δ5,22-stigmastadiene-3βol (0.1%). The same sterols are present in the esterified sterol fraction. Δ7-Sterols and Δ5,7-sterols are present in significantly larger amounts in the esterified fraction than in the free sterol fraction. By a comparison with the sterols of the cricket food, it is clear thatA. domesticus is capable of removing methyl and ethyl groups from C-24 of sterols of the campestane and stigmastane type. The ability to introduce a Δ7 double bond into saturated and Δ5-sterols is indicated, and it is suggested that Δ7-sterols of the C27, C28, and C29 sterol series may be intermediates in the conversion of Δ5-sterols to Δ5,7-sterols. Associate Professor, Department of Chemistry, University of Michigan, Ann Arbor, Mich.; Alfred P. Sloan Foundation Fellow, 1968–68. Public Health Service Predoctoral Fellow, 1968–67.  相似文献   

16.
Thermal dimerization of the conjugated 10-trans, 12-trans linoleate (250C, 5 hr) produced a dimer whose structure is shown to be that of the Diels-Alder reaction between two molecules of monomer, with one molecule acting as diene, and either one of the two double bonds of the second molecule acting as dieneophile. This produces four skeletal isomers of a tetrasubstituted (1,2,3,4) cyclohexene structure with α-β unsaturation on one chain. The isomers formed depend on whether the 10 or the 12 double bond acts as dieneophile, and whether the monomers add “head to head” or “head to tail.” Evidences for the structures include chemical analyses, ozonolysis, nuclear magnetic resonance, IR and UV spectrometry and particularly mass spectrometry of the distilled dimer, of the completely hydrogenated dimer, and of the aromatized dimer formed by catalytic dehydrogenation. The hydrogenated dimer can be separated into two components by TLC. These are probably related to “head to head” vs. “head to tail” addition. Presented at the AOCS Meeting, New Orleans, 1964. Journal Series No. 366.  相似文献   

17.
A simple method is described for the preparation of [6,7,7−2H3] sterols and steroids. The synthesis starts with a Δ5-sterol or steroid and involves preparation of the 6-oxo-3α,5α-cyclosteroid, base exchange in the presence of deuterium oxide to introduce two deuteriums at the C-7 position and sodium borodeuteride reduction of the 6-oxo group to introduce the third deuterium atom at C-6. Rearrangement of the [6,7,7−2H3]6α-hydroxy-3α,5α-cyclosteroid then gives the desired [6,7,7-2H3]-Δ5 sterol or steroid. [6,7,7−2H3]Cholesterol, [6,7,7−2H3]pregnenolone and [6,7,7−2H3]3β-hydroxyandrost-5-en-17-one were synthesized in this fashion and [6,7,7−2H3]progesterone was prepared from the [6,7,7−2H3]pregnenolone. Three examples of the use of these deuchromatography-mass spectrometry. The chrysophyte alga,Ochromonas malhamensis, was shown to be capable of introducing an extra methyl or ethyl group at C-24 of the side chain of [6,7,7−2H3]cholesterol to yield brassicasterol and poriferasterol, respectively. The ovary of the echinoderm,Asterias rubens, was demonstrated to metabolize [6,7,7−2H3]progesterone to yield mainly the 5α-isomers of pregnane-3,20-dione and 3β-hydroxypregnan-20-one. However, the 5β-isomers of these compounds were also detected as minor products for the first time as progesterone metabolites in this animal. Isolated oocytes of the frog,Xenopus laevis, produced a number of metabolites of [6,7,7−2H3]progesterone. In this report, two of them were shown to be 17α-hydroxy-pregn-4-en-3,20-dione and 20α-hydroxypregn-4-en-3-one. Presented at the “Sterol Symposium” of the American Oil Chemists' Annual International Conference, New Orleans, LA, May 1981.  相似文献   

18.
Serum cholesterol precursor sterols reflect the activity of cholesterol synthesis. In this study, squalene, methyl sterol and lathosterol contents were studied in very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) of heterozygous familial hypercholesterolemia patients without and with ileal bypass. The contents of lathosterol and all methyl sterols (lanosterol, Δ8,24-dimethylsterol, Δ8-dimetylsterol, Δ8-methostenol and methostenol), but not of squalene were increased in all lipoproteins by ileal bypass. The increase in the free methyl sterols was more marked than that in the esterified ones. The percentage esterification of the methyl sterols was highest in HDL and lowest in VLDL. Lipoprotein methyl sterol contents were positively correlated with each other and with cholesterol synthesis. The methyl sterols were slightly concentrated in LDL, and squalene strongly concentrated in VLDL. It is concluded that long-term stimulation of cholesterol synthesis increases the methyl sterols in all lipoproteins.  相似文献   

19.
Sterols were analyzed from four phytoplankton strains which are under investigation as possible sources of food for oysters in culture. One strain ofPyramimonas contained only 24-methylenecholesterol as a major sterol component.Pyramimonas grossii, Chlorella autotrophica andDunaliella tertiolecta each contained a complex mixture of C28 and C29 sterols with Δ7, Δ5,7 and Δ5,7,9(11) nuclear double bond systems. Sterols were found both with and without the C-22 side chain double bond. Ergosterol and 7-dehydroporiferasterol were the principal sterols in each of the latter three species, which also contained the rare tetraene sterols, 24-methylcholesta-5,7,9(11),22-tetraen-3β-ol and 24-ethylcholesta-5,7,9(11),22-tetraen-3β-ol.  相似文献   

20.
Twenty-two sterols were identified by capillary gas chromatography and capillary gas chromatography/mass spectroscopy inCucurbita maxima grown under green-house conditions. Both whole plants and individual tissues (leaves, stems, roots, cotyledons, flowers) were analyzed at weekly intervals during the 12-week development of the plant. In whole plants, sterol accumulation parallels plant growth except for a period in the mid-life cycle where there is a reduction in the amount of sterol accumulated on a total sterol/plant and mg sterol/g dry wt basis. This reduction in the amount of sterol is coincident with the visual onset of flowering. During development, the percent contribution of each class of sterol (Δ5_, Δ7_, Δ0_-sterols) remains relatively constant. However, the percent contribution of an individual sterol species varies depending on the tissue examined and the developmental period selected for analysis. While the young plant (<2 weeks) possesses elevated levels of sterols with the Δ25(27)-double bond, the trend was toward a reduction in the amounts of these sterols with development. Leaves and stems accumulate large quantities of 24ζ-ethyl-5α-cholesta-7,22-dien-3β-ol (7,22-stigmastadienol) and 24ζ-ethyl-5α-cholest-7-en-3β-ol (7-stigmastenol), while roots accumulate only 7,22-stigmastadienol as their principal sterol. Male flowers and roots were found to contain elevated levels of Δ5_-sterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号