首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the efficacy of in-package pasteurization combined with pre-surface application of nisin and/or lysozyme to reduce and prevent the subsequent recovery and growth of Listeria monocytogenes during refrigerated storage on the surface of low-fat turkey bologna. Sterile bologna samples were treated with solutions of nisin (2 mg/ml=5000 AU/ml), lysozyme (10 mg/ml=80 AU/ml) and a mixture of nisin and lysozyme (2 mg nisin+10mg lysozyme/ml) before in-package pasteurization at 65 degrees C for 32s. In-package pasteurization resulted in an immediate 3.5-4.2 log CFU/cm(2) reduction in L. monocytogenes population for all treatments. All pasteurized treatments also resulted in a significant reduction of L. monocytogenes by 12 weeks compared to un-pasteurized bologna. In-package pasteurization in combination with nisin or nisin-lysozyme treatments was effective in reducing the population below detectable levels by 2-3 weeks of storage. Results from this study could have a significant impact for the industry since a reduction in bacterial population was achieved by a relatively short pasteurization time and antimicrobials reduced populations further during refrigerated storage.  相似文献   

2.
Surface pasteurization was examined in combination with low-phenolic antimicrobial extracts derived from liquid smoke to inhibit and prevent the growth of Listeria monocytogenes during the shelf life of ready-to-eat meats. In preliminary trials with retail frankfurters, one smoke derivative (2-min dip) produced a 0.3-log reduction of L. monocytogenes and a 1-min in-bag pasteurization (73.9 degrees C) produced a 2.9-log reduction, whereas a combination of the two treatments produced a 5.3-log reduction that resulted in no detectable Listeria by week 3 under accelerated shelf-life conditions (10 degrees C). In trials with frankfurters manufactured without lactate or diacetate that were treated with a shortened 1-s dip, this smoke extract and one with reduced smoke flavor and color both produced a > 4.5-log reduction of L. monocytogenes on frankfurters when heated at 73.9 degrees C for 1 min, with no recoverable Listeria detected for 10 weeks when stored at 6.1 degrees C. When deli turkey breast chubs manufactured without lactate, diacetate, or nitrite were treated with a 1-s dip in combination with radiant-heat pasteurization (270 degrees C), growth of L. monocytogenes was retarded but not prevented. However, in a similar study in which smoke extract treatment of deli turkey breast was combined with in-bag postpackage pasteurization (water submersion at 93.3 degrees C), a 60-, 45-, or even 30-s heat treatment resulted in a 2- to 3-log reduction of L. monocytogenes, with no growth on the meat during 10 weeks of storage at 6.1 degrees C. These findings indicate that reduced-acid low-phenolic antimicrobial liquid smoke derivatives combined with surface pasteurization are capable of reducing or preventing growth of L. monocytogenes to meet the criteria for the U.S. Department of Agriculture Food Safety and Inspection Service Alternative 1 process for ready-to-eat deli meat products manufactured without lactate or diacetate.  相似文献   

3.
Recent regulatory concerns about the presence of the pathogen Listeria monocytogenes in ready-to-eat aquatic foods such as caviar has prompted the development of postpackaging pasteurization processes. However, caviar is heat labile, and conventional pasteurization processes affect the texture, color, and flavor of these foods negatively. In this study, chum salmon (Oncorhynchus keta, 2.5% total salt) caviar or ikura and sturgeon (Acipenser transmontanus, 3.5% total salt) caviar were inoculated with three strains of Listeria innocua in stationary phase at a level of more than 10(7) CFU/g. L innocua strains were used because they exhibit an equivalent response to L monocytogenes for many physicochemical processing treatments, including heat treatment. The products were treated by immersion in 500 IU/ml nisin solution and heat processed (an 8-D process without nisin or a 4-D process with 500 IU/ml nisin) in a newly developed radio frequency (RF; 27 MHz) heating method at 60, 63, and 65 degrees C. RF heating along with nisin acted synergistically to inactivate L. innocua cells and total mesophilic microorganisms. In the RF-nisin treatment at 65 degrees C, no surviving L. innocua microbes were recovered in sturgeon caviar or ikura. The come-up times in the RF-heated product were significantly lower compared with the water bath-heated caviar at all treatment temperatures. The visual quality of the caviar products treated by RF with or without nisin was comparable to the untreated control.  相似文献   

4.
ABSTRACT: The inhibitory effects of in-package pasteurization (3–5D, decimal reduction times) combined with a nisin (7%, w/w) containing wheat gluten film were tested over an 8-wk storage period against Listeria monocytogenes and Salmonella Typhimurium populations inoculated on refrigerated bologna. Bologna slices subjected to the in-package pasteurization process reducedL. monocytogenes populations 3.8- to 7.0-log colony-forming units (CFU)/g, and the remaining population fluctuated between 1.2- and 38-log CFU/g over the 2-mo storage period. S . Typhimurium was reduced 5.7- to 7.3-log CFU/g, and the remaining population progressively declined from 100 to <10 CFU/g over 2 mo of storage. The wheat gluten film containing nisin was effective in reducing the population of L. monocytogenes (2.75-log reduction with pasteurization; 1-log reduction without pasteurization), but was not effective against S . Typhimurium (<1-log reduction). Combining both treatments significantly reduced the L. monocytogenes populations and prevented outgrowth over the 2-mo storage period but provided no added inhibitory effect against S . Typhimurium compared with only pasteurization.  相似文献   

5.
In this paper, a thermal process for the surface pasteurization of ready-to-eat (RTE) meat products for the reduction of Listeria monocytogenes on such products (turkey bologna, roast beef, corned beef, and ham) is described. The process involves the passage of products through a "tunnel" of heated coils on a stainless steel conveyor belt at various treatment times relevant to the manufacture of processed meat for the surface pasteurization of RTE meat products. Two inoculation procedures, dip and contact inoculation, were examined with the use of a four-strain cocktail of L. monocytogenes prior to heat processing. With the use of radiant heat prepackage surface pasteurization, 1.25 to 3.5-log reductions of L. monocytogenes were achieved with treatment times of 60 to 120 s and air temperatures of 475 to 750 degrees F (246 to 399 degrees C) for these various RTE meats. Reduction levels differed depending on the type of inoculation method used, the type of product used, the treatment temperature, and the treatment time. Prepackage pasteurization (60 s) was also combined with postpackage submerged water pasteurization for formed ham (60 or 90 s), turkey bologna (45 or 60 s), and roast beef (60 or 90 s), resulting in reductions of 3.2 to 3.9. 2.7 to 4.3, and 2.0 to 3.75 log cycles, respectively. These findings demonstrate that prepackage pasteurization, either alone or in combination with postpackage pasteurization, is an effective tool for controlling L. monocytogenes surface contamination that may result from in-house handling.  相似文献   

6.
Surface pasteurization by applying steam or hot water before or after packaging of processed foods may be used to eliminate pathogens such as Listeria monocytogenes from ready-to-eat meat and poultry products. Surface pasteurization treatment with a mixture of pressurized steam and hot water was integrated into a continuous vacuum-packaging system to reduce L. monocytogenes from fully cooked franks. The franks (2.54 cm diameter by 15.24 cm length) were surface inoculated to contain up to 6 log CFU/cm2 L. monocytogenes. The inoculated franks were treated at 121 degrees C for 1.5 s in an arrangement of six franks per packaging chamber followed by immediate vacuum sealing of the top films of food packages in the same unit. A 3-log CFU/cm2 reduction of L. monocytogenes on fully cooked franks was obtained using the integrated pasteurization-packaging system. The pasteurization depth was 1.27 mm below the surfaces of the franks. This process provides a commercially applicable means of ensuring food safety by effectively eradicating L. monocytogenes from ready-to-eat meat and poultry products at the very last possible step of food packaging before reaching retail consumers.  相似文献   

7.
An organic acid solution of 2% acetic, 1% lactic, 0.1% propionic, and 0.1% benzoic acids was combined with steam surface pasteurization to treat frankfurters during vacuum packaging to eliminate potential postcook contamination with Listeria monocytogenes. The thermal lethality of L. monocytogenes from steam was evaluated at an inoculation concentration of 1 to 6 log CFU/cm2. About 3-log reductions of L. monocytogenes were achieved when frankfurters were treated by steam for 1.5 s. Combining organic acid treatment with steam pasteurization further inhibited the growth of surviving L. monocytogenes cells for 19 and 14 weeks when the packaged frankfurters were stored at 4 and 7 degrees C, respectively. The results from this study provide meat processors with useful information for controlling L. monocytogenes on ready-to-eat meats.  相似文献   

8.
The control of Listeria monocytogenes was evaluated with ready-to-eat uncured turkey and cured pork-beef bologna with combinations of benzoate, propionate, and sorbate. Three treatments of each product type were formulated to include control with no antimycotic agents; a combination of 0.05% sodium benzoate and 0.05% sodium propionate; and a combination of 0.05% sodium benzoate and 0.05% potassium sorbate. Ingredients were mixed, stuffed into fibrous, moisture-impermeable casings, cooked to an internal temperature of 73.9 degrees C, chilled, and sliced. The final product was surface inoculated with L. monocytogenes (4 log CFU per package), vacuum packaged, and stored at 4 degrees C for 13 weeks. The antimycotic addition to the second and third uncured turkey treatments initially slowed the pathogen growth rate compared with the control, but populations of L. monocytogenes increased 5 log or more by 6 weeks. In contrast, the addition of antimycotic combinations in the cured bologna prevented growth of L. monocytogenes during the 13-week storage period at 4 degrees C, compared with a more than 3.5-log increase in listerial populations in the control bologna, to which no antimicrobial agents had been added. These data suggest that low concentrations of antimycotic agents can prevent L. monocytogenes growth in certain ready-to-eat meats. Additional research is needed to define the levels needed to prevent growth of L. monocytogenes in high-moisture cured and uncured ready-to-eat meat and poultry and for gaining governmental approval for their use in such formulations.  相似文献   

9.
The heat resistance of Salmonella enterica serovar Typhi PF-724 and Listeria monocytogenes 2812 was determined in a commercial bologna batter. The heat inactivation of the two bacterial species was also studied in a semiautomatic pilot smokehouse under cooking conditions that reproduced an industrial bologna process. S. enterica serovar Typhi PF-724 was less heat resistant than L. monocytogenes 2812. The D-values (times required to reduce the population by 1 logarithmic cycle) for S. enterica serovar Typhi PF-724 ranged from 10.11 to 0.04 min for temperatures of 50 to 70 degrees C, while for L. monocytogenes 2812, the D-values were 2.5-, 4.9-, 3.8-, 3.3-, and 2-fold higher at 50, 55, 60, 65, and 70 degrees C, respectively, than for S. enterica serovar Typhi PF-724. However, the z-value (temperature required to reduce log D by 1 logarithmic cycle) for S. enterica serovar Typhi PF-724 (5.72 degrees C) was not significantly different from the z-value for L. monocytogenes 2812 (7.04 degrees C), indicating that a given increase in temperature would have a similar effect on the decimal reduction time for both bacterial species in that meat emulsion. Our data on experimentally inoculated batter also showed that processing bologna at a cooking-cooling cycle commonly used in the industry resulted in a minimum 5-log reduction for both S. enterica serovar Typhi PF-724 and L. monocytogenes 2812.  相似文献   

10.
A five-strain Listeria monocytogenes culture was inoculated onto six different types of ready-to-eat (RTE) meats (frankfurters, ham, roast beef, bologna, smoked turkey with lactate, and smoked turkey without lactate). The meats were vacuum packed and stored at 4 degrees C for 24 h prior to irradiation. Populations of L. monocytogenes were recovered by surface plating on nonselective and selective media. The margins of safety studied include 3-log (3D) and 5-log (5D) reduction of pathogenic bacteria to achieve an optimal level of reduction while retaining organoleptic qualities of the meats. A 3-log reduction of L. monocytogenes was obtained at 1.5 kGy when nonselective plating medium was used. The dosages for 3-log reduction were 1.5 kGy for bologna, roast beef, and both types of turkey and 2.0 kGy for frankfurters and ham on the basis of use of selective medium. The D10-values ranged from 0.42 to 0.44 kGy. A 5-log reduction of L. monocytogenes was obtained at 2.5 kGy with nonselective medium. With selective medium, the dosages were 2.5 kGy for bologna, roast beef, and both types of turkey and 3.0 kGy for frankfurters and ham. Survival of L. monocytogenes in the same RTE meat types after irradiation was also studied. Meats were inoculated with 5 log L. monocytogenes per g and irradiated at doses of 2.0 and 4.0 kGy. Recovery of the surviving organisms was observed during storage at temperatures of 4 and 10 degrees C for 12 weeks. Preliminary results showed no growth in meats irradiated at 4.0 kGy. Survivors were observed for irradiated meats at 2.0 kGy stored at 10 degrees C after the second week. No growth was observed in samples irradiated at 2.0 kGy stored at 4 degrees C until the fifth week.  相似文献   

11.
Although the transmission of L. monocytogenes to humans via pasteurized egg products has not been documented, L. monocytogenes and other Listeria species have been isolated from commercially broken raw liquid whole egg (LWE) in both the United States and Ireland. Recent Listeria thermal inactivation studies indicate that conventional minimal egg pasteurization processes would effect only a 2.1- to 2.7-order-of-magnitude inactivation of L. monocytogenes in LWE; thus, the margin of safety provided by conventional pasteurization processes is substantially smaller for L. monocytogenes than for Salmonella species (a 9-order-of-magnitude process). The objective of this study was to evaluate the inhibitory effects of nisin on the survival and growth of L. monocytogenes in refrigerated and pH-adjusted (pH 6.6 versus pH 7.5) ultrapasteurized LWE and in a liquid model system. The addition of nisin (1,000 IU/ml) to pH-adjusted ultrapasteurized LWE reduced L. monocytogenes populations by 1.6 to > 3.3 log CFU/ml and delayed (pH 7.5) or prevented (pH 6.6) the growth of the pathogen for 8 to 12 weeks at 4 and 10 degrees C. Bioactive nisin was detected in LWE at both pH values for 12 weeks at 4 degrees C. In subsequent experiments, Listeria reductions of > 3.0 log CFU/ml were achieved within 24 h in both LWE and broth plus nisin (500 IU/ml) at pH 6.6 but not at pH 7.5, and antilisterial activity was enhanced when nisin was added as a solution rather than in dry form.  相似文献   

12.
Recently, numerous product recalls and one devastating outbreak that claimed 21 lives were attributed to Listeria monocytogenes in ready-to-eat meat products. Consequently, the Food Safety and Inspection Service published a federal register notice requiring manufacturers of ready-to-eat meat and poultry products to reassess their hazard analysis and critical control point plans for these products as specified in 9 CFR 417.4(a). Lebanon bologna is a moist, fermented ready-to-eat sausage. Because of undesirable quality changes. Lebanon bologna is often not processed above 48.9 degrees C (120 degrees F). Therefore, the present research was conducted to validate the destruction of L. monocytogenes in Lebanon bologna batter in a model system. During production, fermentation of Lebanon bologna to pH 4.7 alone significantly reduced L. monocytogenes by 2.3 log10 CFU/g of the sausage mix (P < 0.01). Heating the fermented mix to 48.9 degrees C in 10.5 h destroyed at least 7.0 log10 CFU of L. monocytogenes per g of sausage mix. A combination of low pH (5.0 or lower) and high heating temperatures (> or =43.3 degrees C, 115 degrees F) destroyed more than 5 log10 CFU of L. monocytogenes per g of sausage mix during the processing of Lebanon bologna. In conclusion, an existing commercial process, which was validated for destruction of Escherichia coli O157:H7, was also effective for the destruction of more than 5 log10 CFU of L. monocytogenes.  相似文献   

13.
Enterocins A and B and sakacin K at 200 and 2,000 activity units (AU)/cm2, nisin at 200 AU/cm2, 1.8% potassium lactate, and a combination of 200 AU/cm2 of nisin and 1.8% lactate were incorporated into interleavers, and their effectiveness against Listeria monocytogenes spiked in sliced, cooked ham was evaluated. Antimicrobial-packaged cooked ham was then subjected to high-pressure processing (HPP) at 400 MPa. In nonpressurized samples, nisin plus lactate-containing interleavers were the most effective, inhibiting L. monocytogenes growth for 30 days at 6 degrees C, with counts that were 1.9 log CFU/g lower than in the control after 3 months. In the other antimicrobial-containing interleavers, L. monocytogenes did not exhibit a lag phase and progressively grew to levels of about 8 log CFU/g. HPP of actively packaged ham slices reduced Listeria populations about 4 log CFU/g in all batches containing bacteriocins (i.e., nisin, sakacin, and enterocins). At the end of storage, L. monocytogenes levels in the bacteriocin-containing batches were the lowest, with counts below 1.51 log CFU/g. In contrast, HPP moderately reduced L. monocytogenes counts in the control and lactate batches, with populations gradually increasing to about 6.5 log CFU/g at the end of storage.  相似文献   

14.
Lactobacillus reuteri strain 12002 was used for reuterin production in the two-step fermentation process. A batch culture fermentation was used to produce a maximum biomass of L. reuteri. Then cells were harvested, resuspended in a glycerol-water solution, and anaerobically incubated to produce reuterin. The lyophilized supernatants (approximately 4000 activity units (AU) of reuterin per ml) were diluted in distilled water for decontamination and preservation trials. The MIC values of reuterin for Escherichia coli O157:H7 and Listeria monocytogenes were 4 and 8 AU/ml, respectively. In meat decontamination experiments, the surface of cooked pork was inoculated with either L. monocytogenes or E. coli O157:H7 at a level of approximately log10 5 CFU/cm2, incubated for 30 min at 7 degrees C, and decontaminated by exposure to reuterin (500 AU/ml). The bactericidal effect of reuterin was analyzed 15 s and 24 h after exposure at 7 degrees C. After 15 s of exposure to reuterin, viable numbers decreased by 0.45 and 0.3 log10 CFU/cm2 for E. coli O157:H7 and L. monocytogenes, respectively. After 24 h the numbers decreased by 2.7 log10 CFU/cm2 for E. coli O157:H7 and by 0.63 log10 CFU/cm2 for L. monocytogenes. In the same experiment, the combined effect of reuterin and lactic acid was also investigated. Adding lactic acid (5%, vol/vol) to reuterin significantly enhanced (P < or = 0.05) the efficacy of reuterin. No additional effect (P < or = 0.05) was found when ethanol (40%) was added to the mixture of reuterin and lactic acid. To evaluate the preservative effect of reuterin during meat storage, reuterin was added to raw ground pork contaminated with E. coli O157:H7 or L. monocytogenes. Reuterin at a concentration of 100 AU/g resulted in a 5.0-log10 reduction of the viability of E. coli O157:H7 after 1 day of storage at 7 degrees C. Reuterin at a concentration of 250 AU/g reduced the number of the viable cells of L. monocytogenes by log10 3.0 cycles after 1 week of storage at 7 degrees C.  相似文献   

15.
The objective of this study was to investigate the effect of nisin in combination with heat or antimicrobial chemical treatments (such as lactic acid, chlorous acid, and sodium hypochlorite) on the inhibition of Listeria monocytogenes and total mesophiles in sturgeon (Acipenser transmontanus) caviar. The effects of nisin (250, 500, 750, and 1,000 IU/ml), lactic acid (1, 2, and 3%), chlorous acid (134 and 268 ppm), sodium hypochlorite (150 and 300 ppm), and heat at 60 degrees C for 3 min were evaluated for a five-strain mixture of L. monocytogenes and total mesophiles in sturgeon caviar containing 3.5% salt. Selected combinations of these antimicrobial treatments were also tested. Injured and viable L. monocytogenes cells were recovered using an overlay method. Treating caviar with > or =500 IU/ml nisin initially reduced L. monocytogenes by 2 to 2.5 log units. Chlorous acid (268 ppm) reduced L. monocytogenes from 7.7 log units to undetectable (<0.48 log units) after 4 days of storage at 4 degrees C. However, there were no synergistic effects observed for combinations of nisin (500 or 750 IU/ml) plus either lactic acid or chlorous acid. Lactic acid caused a slight reduction (approximately 1 log unit) in the microbial load during a 6-day period at 4 degrees C. Sodium hypochlorite was ineffective at the levels tested. Mild heating (60 degrees C for 3 min) with nisin synergistically reduced viable counts of L. monocytogenes and total mesophiles. No L. monocytogenes cells (<0.48 log units) were recovered from caviar treated with heat and nisin (750 IU/ml) after a storage period of 28 days at 4 degrees C.  相似文献   

16.
Low-molecular-weight polylactic acid (LMW-PLA) and lactic acid (LA) were used to inhibit growth of Listeria monocytogenes Scott A on vacuum-packaged beef. Nisin was also used simultaneously as an additional hurdle to the growth of this pathogen. Inoculated beef cubes were immersed in a solution of 2% LMW-PLA, 2% LA, 400 IU/ml of nisin, or combinations of each acid and nisin for 5 min and drip-dried for 15 min. The cubes were then vacuum-packaged and stored at 4 degrees C for up to 42 days. Surface pH values of beef cubes treated with 2% LMW-PLA, the combination of 400 IU/ml of nisin and 2% LMW-PLA (2% NPLA), or 400 IU/ml of nisin alone were significantly reduced from 5.59 to 5.18, 5.01, and 5.19, respectively, whereas those decontaminated with 2% LA or 400 IU/ml of nisin and 2% LA (2% NLA) were significantly decreased from 5.59 to 4.92 and 4.83, respectively, at day 0 (P < or = 0.05). The 2% LMW-PLA, 2% LA, 2% NPLA, 2% NLA, and 400 IU/ml of nisin showed immediate bactericidal effects on L. monocytogenes Scott A (1.22-, 1.56-, 1.57-, 1.94-, and 1.64-log10 reduction, respectively) compared with the initial number of 5.33 log10 CFU/cm2 of the untreated control at day 0 (P < or = 0.05). These treatments, combined with vacuum-packaging and refrigeration temperature, succeeded to inhibit growth of L. monocytogenes during storage up to 42 days. At the end of 42 days, the numbers of L. monocytogenes Scott A remaining viable on these samples were 1.21, 0.36, 2.21, 0.84, and 0.89 log10 CFU/cm2, respectively.  相似文献   

17.
Antimicrobial activity of reuterin individually or in combination with nisin against different food-borne Gram-positive and Gram-negative pathogens in milk was investigated. Reuterin (8 AU/ml) exhibited bacteriostatic activity against Listeria monocytogenes, whereas its activity was slightly bactericidal against Staphylococcus aureus at 37 degrees C. Higher bactericidal activity was detected against Escherichia coli O157:H7, Salmonella choleraesuis subsp. choleraesuis, Yersinia enterocolitica, Aeromonas hydrophila subsp. hydrophila and Campylobacter jejuni. A significant synergistic effect on L. monocytogenes and a slight additive effect on S. aureus after 24 h at 37 degrees C were observed when reuterin was combined with nisin (100 IU/ml). The combination of reuterin with nisin did not enhance the antimicrobial effect of reuterin against Gram-negative pathogens.  相似文献   

18.
Several methods using bactericides, hydrostatic pressure, and post-package pasteurization technologies to control Listeria monocytogenes (LM) in ready-to-eat meats have been attempted. In addition to controlling LM contamination, any newly developed technology must have minimal effects on organoleptic properties. The objectives of this study were to: (1) determine the heat resistance of LM in two brands (A and B) of bologna differing in formulations, and, (2) evaluate the effects of post-package pasteurization on product quality. Fat content did not affect LM heat resistance in bologna at 55, 60, and 65 °C; however, Brand B bologna had a numerically lower inactivation rate. Microbial heat resistance differed (P < 0.05) with changes in pasteurization temperature. Time and temperature affected (P < 0.05) cook-loss and L Hunter color value for both bologna brands. These data show that post-package pasteurization is effective but suggest that meat formulations may need modification to prevent development of negative quality characteristics.  相似文献   

19.
Nisin (25-100 IU/ml) and curvaticin 13 (160 AU/ml), a bacteriocin produced by Lactobacillus curvatus SB13, were shown to have a bactericidal effect against Listeria monocytogenes ATCC 15313 in TSB-YE broth (pH 6.5), but it was only transitory. Regrowth was not due to the loss of bacteriocin activity. Cells surviving nisin or curvaticin 13 were more resistant to the respective bacteriocin than the parental strain. Survivors to curvaticin 13 were resistant to the class IIa bacteriocins (camocin CP5, pediocin AcH) but remained sensitive to nisin. The frequencies of spontaneous nisin resistants decreased with increasing bacteriocin concentration and the presence of salts (NaCl, K2HPO4). The behaviour of nisin (1000 IU/ml) or curvaticin 13 (640 AU/ml) resistant variants (Nis1000, Curv645) was investigated in the presence of nisin (100 IU/ml) or curvaticin 13 (320 AU/ml) at 22 and 37 degrees C, and compared with that of the parental strain. The effectiveness of nisin was the same at both temperatures, whereas curvaticin 13 displayed a faster bactericidal action at 37 degrees C. Nis1000 cells were less sensitive to curvaticin 13 than the parental strain, whereas Curv640 cells were more sensitive to nisin than the parental strain. Simultaneous or sequential additions of nisin (50 IU/ml) and curvaticin 13 (160 AU/ml) were performed at 22 degrees C in broth inoculated with the parental strain. All combinations induced a greater inhibitory effect than the use of a single bacteriocin. Simultaneous addition of bacteriocins at t0 led to the absence of viable cells in the broth after 48 h.  相似文献   

20.
Low-temperature, long-time (LTLT) pasteurization assures the safety of banked human milk; however, heat can destroy important nutritional biomolecules. High-pressure processing (HPP) shows promise as an alternative for pasteurization of breast milk. The purpose of this study was to investigate the efficacy of HPP for inactivation of selected bacterial pathogens in human milk. Human milk was inoculated with one of five pathogens (10(8) to 10(9) CFU/ml), while 0.1% peptone solution solutions with the same levels of each organism were used as controls. The samples were subjected to 400 MPa at 21 to 31 degrees C for 0 to 50 min or to 62.5 degrees C for 0 to 30 min (capillary tube method) to simulate LTLT pasteurization. Tryptic soy agar and selective media were used for enumeration. Traditional thermal pasteurization resulted in inactivation (> 7 log) of all pathogens within 10 min. In human milk and in peptone solution, a 6-log reduction was achieved after 30 min of HPP for Staphylococcus aureus ATCC 6538. After 30 min, S. aureus ATCC 25923 was reduced by 8 log and 6 log in human milk and peptone solution, respectively. Treatments of 4 and 7 min resulted in an 8-log inactivation of Streptococcus agalactiae ATCC 12927 in human milk and peptone solution, respectively, while Listeria monocytogenes ATCC 19115 required 2 min for an 8-log inactivation in human milk. Escherichia coli ATCC 25922 was inactivated by 8 log after 10 min in peptone solution and by 6 log after 30 min in human milk. These data suggest that HPP may be a promising alternative for pasteurization of human milk. Further research should evaluate the efficacy of HPP in the inactivation of relevant viral pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号