首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
以硬碳为填料制备了PTFE基复合材料,并研究了该复合材料在干摩擦条件下与不锈钢对摩时的摩擦磨损行为,并探讨其磨损机制.实验结果表明:硬碳能提高FIFE硬度,硬碳/PTFE复合材料的耐磨性能明显优于纯PTFE.其摩擦因数随着硬碳含量的增加而减小.复合材料的摩擦表面SEM观察发现:纯PTFE摩擦表面分布着较明显的犁削和粘着磨损的痕迹,硬碳/PTFE的磨痕较浅,表明硬碳作为填料可有效地抑制FTFE的磨损.  相似文献   

2.
用机械共混、冷压成型烧结的方法制备了纳米SiO2/石墨/玻璃纤维/PTFE复合材料试样。用MM-200型磨损试验机测试了在干摩擦条件下不同载荷时各试样的摩擦磨损性能;用扫描电镜对磨损后试件表面进行观察和分析。研究结果表明:纳米SiO2和玻璃纤维有效提高了PTFE的承载能力,石墨的加入起到了减小摩擦的作用;在本试验条件下,在摩擦过程中三元混合填充PTFE复合材料在偶件表面形成了转移膜,减少了复合材料与偶件的直接接触,因而表现出优异的抗磨性。  相似文献   

3.
Al2O3纤维填充PTFE复合材料摩擦磨损性能分析   总被引:7,自引:1,他引:7  
利用M-200型摩擦磨损试验机考察了填料含量及载荷对粉状Al2O3纤维填充PTFE复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察分析磨损表面形貌及磨损机理。结果表明:Al2O3纤维填料可提高PTFE的硬度,从而可提高PTFE的耐磨性,但复合材料中Al2O3含量较高时会导致磨粒磨损,且AL2O3含量越高相应的磨粒磨损越严重。在本试验条件下,当Al2O3的质量分数为20%左右时,PTFE复合材料的耐磨性最佳;PTFE复合材料同钢对磨时的摩擦系数比纯PTFE大,且随Al2O3含量的增加而增大。  相似文献   

4.
软碳填充PTFE复合材料摩擦磨损性能研究   总被引:1,自引:1,他引:0  
以不同含量的软碳为填料制备了PTFE基复合材料,测量了其机械性能,在M-2000型摩擦磨损试验机上研究其摩擦磨损行为,并探讨了其磨损机制.结果表明:软碳能提高PTFE复合材料的硬度,软碳/PTFE复合材料的耐磨性能优于纯PTFE,当软碳质量分数为7%时其耐磨性能最好.复合材料的摩擦因数随着软碳含量的增加而增加.摩擦表面的SEM观察发现:纯PTFE的摩擦表面分布着较明显的犁削和黏着磨损的痕迹,复合材料的摩擦表面均出现犁削,随着软碳含量的增加,犁削现象减轻,这表明以软碳作为填料可有效地抑制PTFE的磨损.  相似文献   

5.
PTFE复合材料高温摩擦磨损性能研究   总被引:4,自引:3,他引:1  
研究了高温条件下不同填料填充的PTFE复合材料的摩擦磨损性能,并与常温下的摩擦磨损性能进行了比较.结果表明青铜粉、纤维填充的复合材料在高温下表现出与常温相反的摩擦磨损规律;碳类填充复合材料在不同温度下则表现出较为稳定的规律;特种塑料改性的PTFE复合材料,具有极好的综合性能.  相似文献   

6.
采用机械共混-冷压成型-烧结的工艺制备了PEEK、PPS填充PTFE基粘弹.摩擦型阻尼材料,用环-块式磨损试验机研究了在干摩擦条件下的摩擦磨损性能;用扫描电子显微镜观察磨损表面形貌和内部组织结构。结果表明:混合填充PEEK和PPS时,2种填充物的比例对材料的摩擦因数影响不大,当二者含量相近时,摩擦因数最大;填充物对磨损性能的影响与对摩擦因数的相同;随着PEEK含量的增加和PPS含量的减少,材料的磨损方式由疲劳剥落磨损为主转变为犁削、粘着磨损;PTFE含量的增加,使得复合材料的摩擦因数减小,而磨损有所增大。综合考虑认为,PTFE与适当比例的PEEK/PPS混合填充,具有合适的摩擦因数和较好的耐磨性,能够满足特殊工况下阻尼材料的需要。  相似文献   

7.
Ekonol填充PTFE三层复合材料摩擦学性能研究   总被引:1,自引:0,他引:1  
在端面摩擦磨损试验机上对Ekonol填充PTFE三层复合材料试样进行了常温干摩擦实验,探讨了Ekonol含量对材料摩擦磨损性能及磨损机制的影响.结果表明,随着Ekonol含量的增加,材料的摩擦因数逐渐增大,但总体上比较小(<0.14),表现出了较好的摩擦性能,同时材料的耐磨损性能随Ekonol含量的增加而增大,说明Ekonol的加入有利于改善材料的摩擦学性能.  相似文献   

8.
碳纳米管增强PTFE复合材料摩擦磨损性能研究   总被引:1,自引:0,他引:1  
以不同含量的CNTs(碳纳米管)为填料制备了PTFE基复合材料,测量其硬度,在M-2000型摩擦磨损试验机上研究其摩擦磨损行为。结果表明,CNTs能提高PTFE的硬度,CNTs/PTFE复合材料的耐磨性能明显优于纯PT-FE,当CNTs的质量分数为3%时,复合材料的耐磨性能大幅度提高。其摩擦因数随着CNTs含量的增加而加大,当CNTs的质量分数为1%时,摩擦因数随载荷的增加而减少,CNTs的质量分数为3%和5%时,摩擦因数随载荷的增加而增大。SEM观察发现:纯PTFE的断面上分布着大量的带状结构,而填充CNTs后,摩擦表面较平整光滑,表明CNTs作为填料可有效地抑制PTFE的犁削和粘着磨损。  相似文献   

9.
制备了氟化钙CaF2填充PTFE三层复合材料,并在端面摩擦磨损试验机上对其进行了常温干摩擦及预浸油摩擦实验,探讨了CaF2含量对材料摩擦磨损性能及磨损机理的影响.结果表明,随着CaF2含量的增加,材料的摩擦因数逐渐增大,但添加少量CaF2时材料的耐磨损性能明显提高,说明少量CaF2的加入有利于改善材料的综合摩擦磨损性能.  相似文献   

10.
李科  向定汉  朱晓林  王美龙 《润滑与密封》2007,32(1):159-161,192
通过模压的方法制备了聚四氟乙烯(PTFE)和纳米高岭土填充的聚苯硫醚(PPS)复合材料。摩擦磨损实验在往复式滑动摩擦试验机上完成进行,对摩面为硬度值HRC 38、表面粗糙度Ra0.8μm的45#钢。用扫描电镜观察了试样磨损表面形貌。实验结果表明:填料的加入降低了PPS的摩擦因数和磨损率,且PTFE和纳米高岭土共同填充的PPS复合材料比单一PTFE填充的PPS复合材料具有更好的摩擦磨损性能;其中试样PPS 15%PTFE 15%(质量分数)纳米高岭土具有最低的稳定摩擦因数0.20~0.23和最小的磨损率1.9×10-6mm3/(N.m)。PTFE和纳米高岭土的加入使PPS的主要磨损方式由粘着磨损转变为磨粒磨损。  相似文献   

11.
以碳黑为填料制备了PTFE基复合材料,并研究了该复合材料在干摩擦条件下与不锈钢对摩时的摩擦磨损行为,并探讨其磨损机制。实验结果表明,碳黑/PTFE复合材料的摩擦因数随着碳黑含量的增加呈增加的趋势,其耐磨性能明显优于纯PTFE。当碳黑的质量分数为5%时,其抗磨性能最好。SEM观察发现纯PTFE的断面上分布着大量的带状结构,而填充了碳黑后,则未观察到这种带状结构,这说明碳黑有效地抑制了PTFE结构的破坏。对PTFE和碳黑/PTFE复合材料的摩擦表面的SEM观察发现,前者的摩擦表面分布着较明显的犁削和粘着磨损的痕迹,而后者的摩擦表面则平整光滑,这表明以碳黑作为填料可有效地抑制PTFE的磨损。  相似文献   

12.
纳米氧化物填充PTFE复合材料的摩擦学性能   总被引:1,自引:0,他引:1  
用机械共混、冷压成型烧结的方法分别制备了不同纳米氧化物填充PTFE复合材料试样.用MM-200型磨损试验机测试了在干摩擦条件下各试样的摩擦磨损性能;用扫描电子显微镜(SEM)对试样的混合程度和磨屑的形貌进行了观察和分析.结果表明:在实验条件下,纳米TiO2和纳米Al2O3的加入均可较大幅度提高PTFE的耐磨性,在250 N载荷下,纳米TiO2和纳米Al2O3的加入可使PTFE耐磨性分别提高7.3和3.4倍;纳米TiO2和纳米Al2O3的加入对PTFE摩擦因数影响不大;纳米TiO2和纳米Al2O3填充PTFE复合材料的磨损机制主要是粘着磨损.  相似文献   

13.
SiO2填充聚四氟乙烯复合材料的摩擦学行为研究   总被引:7,自引:3,他引:7  
用机械共混和冷压成型、热烧结的方法制备了琐体积含量不同粒径的SiO2填充PTFE样品,用M-2000摩擦磨损试验机评价了不同样品在干摩擦下的摩擦学性能;用X射线能量损失谱(EDS)观察分析了摩前后Si元素在样品表面的分布情况,结果表明:在本实验所采用的实验条件下,SiO2/PTFE复合材料的摩擦系数随SiO2体积含量的增加而增大,抗磨损能力则有一个最佳含量;填料粒径不同其体积填充分数对复合材料摩擦磨损性能的作用规律不同,在相同的体积分数下,粗SiO2填充PTFE的摩擦系数小于细SiO2填充PTFE的摩擦系数,且其随SiO2填充分数增加而增大的趋势远小于细SiO2填充PTFE;其具有最好抗磨能力的最佳体积填充含量也大于细SiO2的体积填充含量,SiO2这种填充作用规律可由其在PTFE基体中的形态结构特征来解释。  相似文献   

14.
短玻纤填充PTFE复合材料磨损性能研究   总被引:6,自引:0,他引:6  
用机械共混、冷压成型和烧结的方法制备了不同质量分数(10%~40%)的短玻纤填充PTFE复合材料样品。用MM-200型磨损试验机评价了不同样品在于摩擦定载荷条件下的磨损性能;用扫描电子显微镜(SEM)对试样的磨损表面进行了观察分析。结果表明:在所采用的实验条件下,随短玻纤含量的增加,抗磨损性能先增大后减小,在含量为30%取得最佳抗磨损性能。  相似文献   

15.
纳米金属粉填充Ekonol/PTFE复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
评价了分别用不同体积含量的纳米镍粉和纳米铜粉填充聚苯酯/聚四氟乙烯(Ekonol/PTFE)复合材料体系的力学性能,利用M-200型磨损试验机研究了纳米Ni、纳米Cu含量对Ekonol/PTFE复合材料摩擦学性能的影响,借助扫描电子显微镜和能谱分析手段考察试样磨损表面和磨屑,并探讨其摩擦磨损机制。结果表明,纳米Ni能在一定范围内增加Ekonol/PTFE复合材料的冲击强度;纳米金属粉填入量较小时均能增加复合材料的洛氏硬度。纳米Ni与纳米Cu均能增加Ekonol/PTFE复合材料的摩擦因数并降低磨损率。其原因在于纳米金属粉在复合材料摩擦表面富集,通过金属分子间的吸引作用,增大复合材料的摩擦因数。  相似文献   

16.
聚苯酯填充聚四氟乙烯复合材料摩擦学行为研究   总被引:7,自引:3,他引:7  
采用聚苯酯(Ekonol)、Ekonol/PAB纤维增强聚四氟乙烯(PTFE)制备利用转移膜润滑的摩擦副材料,并研究了两组材料在于摩擦条件下与9Cr18轴承钢对摩时的摩擦学性能;运用扫描电镜分析了两组材料磨损表面形貌和磨损机理。结果表明:随着Ekonol含量的增大,Ekonol填充PTFE复合材料的摩擦因数逐渐增大,当Ekonol质量分数超过25%时摩擦因数略有下降,磨损方式由以犁削磨损为主转变为以疲劳磨损为主;而Ekonol/PAB纤维填充门FE复合材料的摩擦因数,随Ekonol含量的增大而增大,磨损方式由以粘着磨损为主转变为以疲劳磨损为主。Ekonol/PAB纤维填充PTFE复合材料的摩擦学性能优于Ekonol填充PTFE复合材料。  相似文献   

17.
纳米高岭土和石墨填充PTFE复合材料摩擦磨损性能   总被引:1,自引:0,他引:1  
采用模压法制备石墨和纳米高岭土填充的聚四氟乙烯(PTFE)复合材料,在往复式滑动摩擦磨损试验机上测试了其的干滑动摩擦磨损性能,试验机往复频率为1.0 Hz.用扫描电镜观测和分析试样的磨损表面.结果表明:石墨和纳米高岭土共同填充的PTFE,在改善其耐磨性的同时,又保持了低的摩擦因数,其中含10%高岭土和5%石墨的PTFE复合材料表现最佳,稳定阶段的摩擦因数保持在0.11左右,耐磨性比纯PTFE提高了大约90倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号