共查询到16条相似文献,搜索用时 62 毫秒
1.
为解决大规模无约束优化问题,基于Wolfe线搜索技术,提出新的修正HS共轭梯度法。在水平集有界和梯度Lipschitz连续的条件下,证明新算法具有全局收敛性。数值实验证实此算法有效可行。 相似文献
2.
改进的共轭梯度法及其收敛性 总被引:5,自引:0,他引:5
共轭梯度法是求解大规模无约束优化问题的一种有效方法。针对算法的优劣主要依赖于步长因子和搜索方向的特点,结合共轭梯度法的共轭性质,提出一种改进的可以控制步长因子的共轭梯度算法。在建立算法的几个重要引理和全局收敛性定理后分别给出了证明。最后对算法进行了数值实验,实验结果表明算法具有良好的收敛性和有效性。 相似文献
3.
共轭梯度法是求解大规模无约束优化问题的一种有效方法。针对算法的优劣主要依赖于步长 因子和搜索方向的特点,结合共轭梯度法的共轭性质,提出一种改进的可以控制步长因子的共轭梯度算 法。在建立算法的几个重要引理和全局收敛性定理后分别给出了证明。最后对算法进行了数值实验,实 验结果表明算法具有良好的收敛性和有效性。 相似文献
4.
给出了两类求解无约束最优化问题修正的HS共轭梯度法.在Wolfe线搜索下,无需给定下降条件即可得到算法的全局收敛性.数值试验证明了该方法的有效性和稳定性. 相似文献
5.
共轭梯度法是求解非线性优化问题的一种重要方法.通过对共轭梯度法及其全局收敛性的分析,提出一个新的非线性共轭梯度公式,采用该公式和Wolfe非精确线搜索的方法是全局收敛的.文末的数值实验验证了算法是有效的. 相似文献
6.
针对无约束优化问题的一类重要算法——共轭梯度法,提出一种相关DY共轭梯度法,由此得到新的确定βk公式,并在强Wolfe条件下证明了该算法的全局收敛性.结合修正的DY共轭梯度法,得到相关修正DY共轭梯度法,确定另一个βk公式,同时证明在强Wolfe条件下,该算法是全局收敛的.通过拓展共轭梯度法相关性的有关内容,进一步验证了共轭梯度法中FR公式与DY公式之间的某种特殊的联系. 相似文献
7.
一种新共轭梯度法的全局收敛性 总被引:1,自引:0,他引:1
对求解无约束最优化问题的共轭梯度法进行了研究,提出了计算βk的一种新的公式,并对标准Wolfe搜索条件进行了推广,得到一种新的共轭梯度法。在一定条件下证明了该算法的全局收敛性,同时给出了一些数值例子,得到很好的数值结果。 相似文献
8.
孟继东 《西华大学学报(自然科学版)》2012,31(5):65-68
基于无记忆BFGS拟牛顿法结构提出一个新的修正Liu-Storey(LS)非线性共轭梯度法(简称MLSCG算法)。在精确线搜索下MLSCG算法化归为标准的LS共轭梯度算法。MLSCG算法产生的搜索方向不依赖于线搜索准则而具有充分下降性。新方法在一个Armijo型线搜索下具有全局收敛性。数值试验表明:对于多数算例,新算法比PRP、HS、LS算法具有更好的计算结果。 相似文献
9.
针对参数βk的不同选取可以构成不同的共轭梯度法,给出了一类求解无约束最优化问题的修正的共轭梯度算法,这种算法能够在较弱条件下证明选定的卢。在每一步都能产生一个下降方向,且在Wolfe线搜索下具有全局收敛性.另外这种算法在另一种Wolfe搜索条件下,若搜索方向为下降时,也具有全局收敛性. 相似文献
10.
提出了一种搜索方向带扰动项的修正PRP共轭梯度法。在主方向充分下降的情况下,证明采用强wolfe搜索时,算法是全局收敛的。最后给出了初步的数值试验结果。 相似文献
11.
马琳元 《上海第二工业大学学报》2011,28(1):18-25
共轭梯度法被广泛应用于求解无约束条件的最优化问题,尤其是一些大型最优化问题。近年来,很多学者在诸如FR,PRP,HS等经典方法的基础上,进行加工和改进,以提高共轭梯度法数值计算的效果。例如,基于Dai和Liao等人提出的一种新拟牛顿方程,Li,Tang和Wei构造出新的共轭条件,从而提出了一种新的共轭梯度法。这种方法既具有收敛性又得到更好的计算结果。另一方面,Hager和H Zhang也构造了一种新的单参数共轭梯度法。本文在这些方法的基础之上,给出了一种新共轭梯度法的计算公式,并在强凸条件下证明了其全局收敛性。此外,其数值计算的结果也是令人满意的。 相似文献
12.
通过对不同共轭梯度法收敛性分析的研究,提出了共轭梯度法全局收敛的一个充分条件,分析了该充分条件的合理性,并给出一种带参数的混合共轭梯度法,证明了该方法在强Wolfe线搜索下满足该充分条件.数值实验结果表明:该算法是有效的. 相似文献
13.
研究求解无约束最优化问题的共轭梯度法,提出了一种新的共轭梯度类型公式,从而影响了算法产生的搜索方向,进一步影响了算法的效果,得到一类新共轭梯度法,证明了在Grippo-Lucidi线搜索下新共轭梯度法的全局收敛性. 相似文献
14.
基于Hager-Zhang提出的共轭梯度法,构造了一种新的谱风,证明了该方法不依赖于任何线搜索就具有充分下降性,并且在Armijo搜索下证明了算法的全局收敛性。数值试验表明,该方法明显优于谱DY、谱FR、谱PRP算法。 相似文献
15.
共轭梯度法是一类解决无约束优化问题的有效方法,尤其适用于大规模优化问题的求解。提出一族包含DY方法的新的共轭梯度法,并证明了该算法在Wolfe线搜索条件下具有全局收敛性,数值结果表明该算法是有效的。 相似文献
16.
在WYL共轭梯度法的基础上,提出了一种新的谱共轭梯度法,并且证明了该方法在Armijo线搜索下具有充分下降性和全局收敛性.数值试验表明该方法是有效的。 相似文献