共查询到20条相似文献,搜索用时 71 毫秒
1.
基于肤色分割和AdaBoost算法的彩色图像的人脸检测 总被引:1,自引:0,他引:1
文章提出了肤色分割和AdaBoost算法结合的人脸检测算法。首先,对彩色图像进行肤色分割,通过人脸肤色的统计特征得到候选人脸区域:然后,基于AdaBoost算法,使用由强分类器组成的级联分类器对候选人脸区域进行扫描,最终得到精确定位的人脸。实验证明,该方法具有肤色检测快速和AdaBoost算法误检率低的优点,可以有效的运用于多姿态、多人脸和复杂背景的情况。 相似文献
2.
赵男男 《计算机工程与科学》2011,33(5):85-90
针对AdaBoost算法对多姿态人脸检测效果不理想和肤色模型对复杂背景下的图像误检率高的问题,本文将基于肤色的人脸检测与基于AdaBoost算法的人脸检测结合,提出一种由偏到正的检测方法.主要是通过旋转图片,使人脸分类器不会因为角度问题产生漏检,然后根据分类器检测出的两眼,计算两眼之间的位置关系,判断人脸是否处于正面位... 相似文献
3.
基于肤色和AdaBoost算法的人脸检测 总被引:2,自引:0,他引:2
本文介绍了一种将肤色信息和AdaBoost算法相结合的人脸检测方法。先用肤色分割法排除掉非肤色区域的干扰,然后用AdaBoost算法训练的分类器对肤色区域进行检测,该方法在保证检测率的同时,大大减少了目标区域的误检率,提高了人脸检测准确率。 相似文献
4.
《计算机应用与软件》2017,(8)
针对复杂背景和高分辨率的人脸检测问题,提出一种多颜色空间下的肤色检测和改进型AdaBoost算法结合的人脸检测方法。首先,为了提高检测速度,采用多颜色空间的肤色检测作为预处理,结合CMYK、HSV、YCbCr三种颜色空间下的肤色阈值分割,得到人脸候选区域;其次,为了克服人脸相似区域容易导致的退化现象,将样本和弱分类器阈值的距离结合到权重更新中,提出一种改进型的AdaBoost算法。实验证明,二者结合后的新方法,在保证检测率的同时,大幅降低了计算复杂度和误检率。 相似文献
5.
文章提出了一种肤色模型与AdaBoost算法相结合的人脸检测方法。首先用YUV+YIQ肤色模型对输入的图像进行初步分割,剔除非肤色区域。再用Adaboost方法进一步检测,精确定位人脸位置。实验结果表明该方法简单、快速,能更好地提高检测的速度和精度。 相似文献
6.
提出一种结合肤色检测及AdaBoost算法的改进的人脸检测方法。首先利用肤色检测得出可疑的人脸区域,然后由改进的AdaBoost算法检测出人脸并标示,应用于智能监控系统中,并设置报警模块,可将可疑人脸信息记录入视频服务器。实验证明,肤色检测可以检测出复杂背景中的肤色区域,可以减少AdaBoost算法的扫描区域,进而减少检测时间;改进的AdaBoost算法在强分类器训练阶段加入判决函数,提高了人脸检测的准确性。 相似文献
7.
8.
9.
人脸检测是一种在数字图像中找到人脸位置和大小的技术。常用于人脸识别、人脸追踪、面部动作捕捉、相机自动对焦等应用中。本文设计并实现了一种基于肤色检测和Haar级联分类器的系统来进行实时人脸检测,先通过肤色检测过滤掉图像中的非皮肤像素区域,后通过Haar级联分类器对剩余像素区域中的人脸进行检测。实验结果表明本系统能够实时地对视频画面中的人脸进行检测,且人脸检测算法计算时间明显小于传统的检测算法。 相似文献
10.
11.
改进的基于AdaBoost算法的人脸检测方法* 总被引:4,自引:0,他引:4
针对传统AdaBoost算法的不足,分析了训练过程中出现的退化问题及样本权重扭曲的现象,并提出了解决这一问题的有效方法.该方法对样本权重的更新规则进行了适当的调整,即为每一轮循环设定一个权重更新阈值,根据样本是否被错误分类以及当前权重是否大于该阈值来更新样本权重,从而限制了困难样本权重的过分增大.使用该方法训练级联人脸检测器,试验结果表明,该方法较好地解决了传统AdaBoost算法所出现的退化问题,在保证检测率的同时降低了误检率. 相似文献
12.
针对复杂背景和可变光照下的彩色图像人脸检测问题,提出一种基于多肤色空间下的肤色分割及Ada-Boost算法的人脸检测方法。首先利用均值滤波、拉普拉斯算子等方法对图像进行增强处理;然后结合YCbCr、YCgCr、YCgCb三种颜色空间下的多肤色空间对图像进行肤色分割,定位出候选的人脸区域;最后对AdaBoost算法的检测过程进行研究验证,检测出人脸并指示。数据显示,该方法在时间、检测率、漏检率等方面都有明显的改进。因此,该方法能较好地处理复杂背景下彩色图像人脸检测的错检、漏检问题,从而提高了检测效率。 相似文献
13.
基于人脸特征和AdaBoost算法的多姿态人脸检测 总被引:2,自引:0,他引:2
基于人脸特征和AdaBoost算法,提出一种改进的多姿态人脸检测算法。首先利用肤色特征快速排除绝大部分背景区域,然后在肤色区域中搜索眼睛和嘴巴区域,根据眼睛和嘴巴区域的几何特征所确定的人脸方向分割出大致正向的人脸候选区域,最后利用AdaBoost算法对候选区域进行分类。实验表明,算法能实现多姿态人脸的快速检测,而且对脸部表情和遮挡有较强的鲁棒性。 相似文献
14.
15.
提出一种综合利用肤色和唇色信息的人脸检测方法。把经过光线补偿处理后的彩色图像从RGB转换到YES颜色空间,根据实验获得的最佳阈值进行肤色区域的提取,得到人脸候选区域。根据嘴唇颜色在YIQ色度空间中最佳阁值分布范围在人脸候选区域中提取唇色,最终确定人脸区域。实验结果表明,该方法具有实时性好、检测和定位精度较高的特点。 相似文献
16.
针对在已有人脸检测方法中采用单阈值所导致的误检率太高的问题,提出一种基于优化加权参数的快速AdaBoost训练检测算法。算法通过改变弱分类器加权参数求解公式的方法,保证了在低误检率的前提下也能获得低误警率;通过特征值曲线自适应得到双阈值,然后构造双阈值弱分类器并进行集成,形成强分类器。实验结果表明,该算法不仅能够有效地提高检测精度,而且,由于双阈值能够减少搜索次数,从而使训练和检测时间也有明显的改进。 相似文献
17.
18.
复杂背景下的多人脸检测方法 总被引:1,自引:0,他引:1
复杂背景下采用肤色进行人脸检测具有较高的检测率,但同时也具有较高的误检率,而采用AdaBoost算法进行人脸检测从根本上解决了实时性问题,但是检测率不理想。基于上述原因,采用肤色分割与AdaBoost相结合的方法对人脸进行检测:首先采用肤色分割进行人脸粗定位,然后将粗定位后的人脸候选区域作为AdaBoost检测的输入子窗口进行人脸检测。在预处理过程中,采用可调节结构元素,解决了对于不同图像中大小不一的人脸采用固定的结构元素造成的人脸丢失问题。实验结果表明该方法在提高检测率的同时,也降低了误检率。 相似文献
19.
基于肤色与肤色矩实时视频人脸检测与跟踪 总被引:1,自引:1,他引:1
提出了一种新颖、鲁棒、实时人脸检测与跟踪算法.该方法采用背景差分法提取运动区域,对运动区域利用肤色归一化RGB和HSV色彩模型的聚类性,得到人脸候选区域.利用人脸几何信息和孔洞信息对人脸候选区域进行验证.基于肤色矩特性,对人脸区域进行跟踪与预测.通过对不同背景条件下的人脸检测与跟踪,实验结果表明,所提算法不仅检测率高,且对光照,人脸姿态的变化具有较强的鲁棒性.基于480×360图像处理速度平均为25帧/秒,可满足系统实时性要求. 相似文献